Abstract

We report measurements of the wavelength dependence of beam divergence for single-mode photonic crystal fiber. These measurements confirm predictions of strongly wavelength-dependent beam divergence, consistent with the effective-index model for the photonic crystal cladding material.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993).
    [CrossRef]
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  3. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, J. Opt. Soc. Am. A 15, 748 (1998).
    [CrossRef]
  5. J. A. Buck, Fundamentals of Optical Fibers (Wiley, New York, 1995), p. 83.
  6. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 672.
  7. N. Reng and B. Eppich, Opt. Quantum Electron. 24, S973 (1992).
    [CrossRef]

1998

1997

1996

1993

1992

N. Reng and B. Eppich, Opt. Quantum Electron. 24, S973 (1992).
[CrossRef]

Atkin, D. M.

Birks, T. A.

Buck, J. A.

J. A. Buck, Fundamentals of Optical Fibers (Wiley, New York, 1995), p. 83.

de Sandro, J. P.

Eppich, B.

N. Reng and B. Eppich, Opt. Quantum Electron. 24, S973 (1992).
[CrossRef]

Knight, J. C.

Reng, N.

N. Reng and B. Eppich, Opt. Quantum Electron. 24, S973 (1992).
[CrossRef]

Russell, P. St. J.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 672.

Yablonovitch, E.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Quantum Electron.

N. Reng and B. Eppich, Opt. Quantum Electron. 24, S973 (1992).
[CrossRef]

Other

J. A. Buck, Fundamentals of Optical Fibers (Wiley, New York, 1995), p. 83.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 672.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Photonic crystal fiber: front face and far-field intensity distribution. (a) Scanning electron microscope image of the end of the fiber, (b) typical profile of the far-field beam, (c) saturated image of the far field. The image in (c) is heavily saturated to show weak hexagonal features in the tail of the beam.

Fig. 2
Fig. 2

Comparison of predicted divergence of PCF and the divergence of standard step-index fiber, under the Gaussian approximation.

Fig. 3
Fig. 3

Schematic of the experimental apparatus.

Fig. 4
Fig. 4

Measured and predicted beam divergences of PCF.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r0/a1/ln V,
θ02ln VVNA.
r2=2Ix,yx-xc2+y-yc2dxdyIx,ydxdy,
r2=2Iixi-xc2+yi-yc2/Ii.
rmeasrtrue=1-2u2/πexp2u2erf2u1/2,

Metrics