Abstract

The properties of purely bound plasmon–polariton modes guided by a symmetric thin metal film of finite width are described for what is believed to be the first time, and a suitable mode nomenclature for identifying them is proposed. The dispersion characteristics of the modes as a function of film thickness are presented. It has been found that long-range plasmon–polariton modes exist in a symmetric film structure and that one of them may be suitable for optical signal transmission.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
    [CrossRef]
  2. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
    [CrossRef]
  3. L. Wendler and R. Haupt, J. Appl. Phys. 59, 3289 (1986).
    [CrossRef]
  4. R. Pregla and W. Pascher, in Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, T. Itoh, ed. (Wiley Interscience, New York, 1989), p. 381.
  5. P. Berini, A. Stöhr, K. Wu, and D. Jäger, J. Lightwave Technol. 14, 2422 (1996).
    [CrossRef]
  6. Since a single metal–dielectric interface can support a plasmon–polariton mode, so should an isolated corner.?Furthermore, the phase and attenuation constants of such a mode should be greater than those of a mode guided by an interface, since fields penetrate more deeply into the metal near the corner to couple the perpendicular edges.

1996

P. Berini, A. Stöhr, K. Wu, and D. Jäger, J. Lightwave Technol. 14, 2422 (1996).
[CrossRef]

1990

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

1986

L. Wendler and R. Haupt, J. Appl. Phys. 59, 3289 (1986).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Berini, P.

P. Berini, A. Stöhr, K. Wu, and D. Jäger, J. Lightwave Technol. 14, 2422 (1996).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Culshaw, B.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Hart, T.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Haupt, R.

L. Wendler and R. Haupt, J. Appl. Phys. 59, 3289 (1986).
[CrossRef]

Jäger, D.

P. Berini, A. Stöhr, K. Wu, and D. Jäger, J. Lightwave Technol. 14, 2422 (1996).
[CrossRef]

Johnstone, W.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Pascher, W.

R. Pregla and W. Pascher, in Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, T. Itoh, ed. (Wiley Interscience, New York, 1989), p. 381.

Pregla, R.

R. Pregla and W. Pascher, in Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, T. Itoh, ed. (Wiley Interscience, New York, 1989), p. 381.

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Stewart, G.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

Stöhr, A.

P. Berini, A. Stöhr, K. Wu, and D. Jäger, J. Lightwave Technol. 14, 2422 (1996).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Wendler, L.

L. Wendler and R. Haupt, J. Appl. Phys. 59, 3289 (1986).
[CrossRef]

Wu, K.

P. Berini, A. Stöhr, K. Wu, and D. Jäger, J. Lightwave Technol. 14, 2422 (1996).
[CrossRef]

J. Appl. Phys.

L. Wendler and R. Haupt, J. Appl. Phys. 59, 3289 (1986).
[CrossRef]

J. Lightwave Technol.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, J. Lightwave Technol. 8, 538 (1990).
[CrossRef]

P. Berini, A. Stöhr, K. Wu, and D. Jäger, J. Lightwave Technol. 14, 2422 (1996).
[CrossRef]

Phys. Rev. B

J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
[CrossRef]

Other

R. Pregla and W. Pascher, in Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, T. Itoh, ed. (Wiley Interscience, New York, 1989), p. 381.

Since a single metal–dielectric interface can support a plasmon–polariton mode, so should an isolated corner.?Furthermore, the phase and attenuation constants of such a mode should be greater than those of a mode guided by an interface, since fields penetrate more deeply into the metal near the corner to couple the perpendicular edges.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Dispersion characteristics of the first four modes supported by the metal film for w=1 µm: (a) normalized phase constant, (b) normalized attenuation constant.

Fig. 2
Fig. 2

Evolution with film thickness of ReSz related to the ssb0 mode: (a) t=100 nm, (b) t=40 nm.

Tables (1)

Tables Icon

Table 1 Vertical and Horizontal Wall Combinations and Proposed Mode Nomenclaturea

Metrics