Abstract

An optical power limiter is a self-actuating nonlinear optical device that transmits low-intensity light and blocks high-intensity light. A light-controlled electro-optic power limiter that uses a Bi12SiO20 crystal has been demonstrated. The threshold light intensity is determined by the control light and can be set to any desired level. The response time of the light-controlled electro-optic power limiter is of the order of 1 ms.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Steier, J. Kumar, and M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
    [CrossRef]
  2. T. Chang, I. McMichael, J. Hong, and M. Khoshnevisan, Mater. Res. Soc. Symp. Proc. 374, 61 (1993).
    [CrossRef]
  3. S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
    [CrossRef]
  4. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 7.
  5. F. Vachss, “Nonlinear holographic response in photorefractive materials,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1988).

1997 (1)

S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
[CrossRef]

1993 (1)

T. Chang, I. McMichael, J. Hong, and M. Khoshnevisan, Mater. Res. Soc. Symp. Proc. 374, 61 (1993).
[CrossRef]

1988 (1)

W. H. Steier, J. Kumar, and M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
[CrossRef]

Bacher, D.

S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
[CrossRef]

Chang, T.

T. Chang, I. McMichael, J. Hong, and M. Khoshnevisan, Mater. Res. Soc. Symp. Proc. 374, 61 (1993).
[CrossRef]

Chen, R. J.

S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
[CrossRef]

Grasza, K.

S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
[CrossRef]

Guha, S.

S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
[CrossRef]

Hong, J.

T. Chang, I. McMichael, J. Hong, and M. Khoshnevisan, Mater. Res. Soc. Symp. Proc. 374, 61 (1993).
[CrossRef]

Hood, P.

S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
[CrossRef]

Khoshnevisan, M.

T. Chang, I. McMichael, J. Hong, and M. Khoshnevisan, Mater. Res. Soc. Symp. Proc. 374, 61 (1993).
[CrossRef]

Kumar, J.

W. H. Steier, J. Kumar, and M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
[CrossRef]

Kutcher, S. W.

S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
[CrossRef]

McMichael, I.

T. Chang, I. McMichael, J. Hong, and M. Khoshnevisan, Mater. Res. Soc. Symp. Proc. 374, 61 (1993).
[CrossRef]

Nathan, G. V. J.

S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
[CrossRef]

Steier, W. H.

W. H. Steier, J. Kumar, and M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
[CrossRef]

Steirer, W. H.

S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
[CrossRef]

Trivedi, S. B.

S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
[CrossRef]

Vachss, F.

F. Vachss, “Nonlinear holographic response in photorefractive materials,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1988).

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 7.

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 7.

Ziari, M.

W. H. Steier, J. Kumar, and M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

W. H. Steier, J. Kumar, and M. Ziari, Appl. Phys. Lett. 53, 840 (1988).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

T. Chang, I. McMichael, J. Hong, and M. Khoshnevisan, Mater. Res. Soc. Symp. Proc. 374, 61 (1993).
[CrossRef]

Mater. Res. Symp. Proc. (1)

S. B. Trivedi, R. J. Chen, K. Grasza, S. W. Kutcher, G. V. J. Nathan, W. H. Steirer, D. Bacher, S. Guha, and P. Hood, Mater. Res. Symp. Proc. 479, 179 (1997).
[CrossRef]

Other (2)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 7.

F. Vachss, “Nonlinear holographic response in photorefractive materials,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical setup of a light-controlled BSO EOPL: V, applied dc voltage; BS, beam splitter; ND, neutral-density filter.

Fig. 2
Fig. 2

Light transmitted by the EOPL with different control-light intensities.

Fig. 3
Fig. 3

Transmission of the EOPL with different control-light intensities.

Fig. 4
Fig. 4

Dynamics of the EOPL.

Fig. 5
Fig. 5

Response time of the EOPL for different signal-light intensities.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Vπ=λ2DL1n03r41,
Iout=Iinsin2π2VVπ11+1-dDβσdarkIin+p,
Iout=Iinsin2π2VVπ11+1-dDβIinσdark+βIc+p.

Metrics