Abstract

Nonlinear propagation of high-power femtosecond pulses close to the zero-dispersion wavelength of a single-mode optical fiber is studied experimentally and numerically. The roles of four-photon mixing, stimulated Raman scattering, and self-steepening in this process are represented through different extensions of the nonlinear Schrödinger equation.

© 1999 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing

Nikola I. Nikolov, Thorkild Sørensen, Ole Bang, and Anders Bjarklev
J. Opt. Soc. Am. B 20(11) 2329-2337 (2003)

Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse

Takashi Hori, Norihiko Nishizawa, Toshio Goto, and Makoto Yoshida
J. Opt. Soc. Am. B 21(11) 1969-1980 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription