Abstract

A new technique for directly extracting phase gradients from two-dimensional (2-D) interferometer fringe data is presented. One finds the gradients by tracking the maximum modulus of the continuous wavelet transform of the fringe data and the phase distribution that is obtained, with a small error, by integration. Problems associated with phase unwrapping are thereby avoided. The technique is compared with standard methods, and excellent agreement is found. In common with Fourier-transform methods, the technique is capable of extracting the full 2-D phase distribution from a single image.

© 1999 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Creath, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, The Netherlands, 1988), Vol. 26, p. 384.
  2. M. Takeda, Indust. Metrol. 1, 79 (1990).
  3. H. Singh and J. Sirkis, Appl. Opt. 33, 5016 (1994).
  4. J. Marroquin, M. Servin, and R. Vera, Opt. Lett. 23, 238 (1998).
  5. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992), Chap. 2.
  6. D. Gabor, J. Inst. Electr. Eng. 93, 429 (1946).
  7. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge U. Press, Cambridge, 1992), Chap. 13.

1998

1994

1992

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge U. Press, Cambridge, 1992), Chap. 13.

I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992), Chap. 2.

1990

M. Takeda, Indust. Metrol. 1, 79 (1990).

1988

K. Creath, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, The Netherlands, 1988), Vol. 26, p. 384.

1946

D. Gabor, J. Inst. Electr. Eng. 93, 429 (1946).

Creath, K.

K. Creath, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, The Netherlands, 1988), Vol. 26, p. 384.

Daubechies, I.

I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992), Chap. 2.

Flannery, B.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge U. Press, Cambridge, 1992), Chap. 13.

Gabor, D.

D. Gabor, J. Inst. Electr. Eng. 93, 429 (1946).

Marroquin, J.

Press, W.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge U. Press, Cambridge, 1992), Chap. 13.

Servin, M.

Singh, H.

Sirkis, J.

Takeda, M.

M. Takeda, Indust. Metrol. 1, 79 (1990).

Teukolsky, S.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge U. Press, Cambridge, 1992), Chap. 13.

Vera, R.

Vetterling, W.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge U. Press, Cambridge, 1992), Chap. 13.

Appl. Opt.

Indust. Metrol.

M. Takeda, Indust. Metrol. 1, 79 (1990).

J. Inst. Electr. Eng.

D. Gabor, J. Inst. Electr. Eng. 93, 429 (1946).

Opt. Lett.

Other

K. Creath, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, The Netherlands, 1988), Vol. 26, p. 384.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge U. Press, Cambridge, 1992), Chap. 13.

I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics