Abstract

Broadband tunability in the yellow–red region is obtained by use of intracavity type II second-harmonic generation of gain-switched Cr:forsterite lasers in KTiOPO4. An operating wavelength range of 67 nm, from 587 to 654 nm, is obtained. Second-harmonic energy of almost 1 mJ is achieved at a peak wavelength of 620 nm. A measured factor-of-34 enhancement in acceptance angle is obtained with broadband harmonic generation. Frequency doubling is optimized with respect to the Cr:forsterite pump and laser parameters.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bosenberg and D. R. Guyer, J. Opt. Soc. Am. B 10, 1716 (1993).
    [CrossRef]
  2. A. D. Hays, L. R. Marshall, and R. Burnham, in Advanced Solid State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), p. 255.
  3. G. R. Morrison, M. Ebrahimzadeh, C. F. Rae, and M. H. Dunn, Opt. Commun. 118, 55 (1995).
    [CrossRef]
  4. A. Sennaroglu, C. R. Pollock, and H. Nathel, IEEE J. Quantum Electron. 30, 1851 (1994).
    [CrossRef]
  5. I. T. McKinnie and AM. L. Oien, Opt. Commun. 141, 157 (1997).
    [CrossRef]

1997 (1)

I. T. McKinnie and AM. L. Oien, Opt. Commun. 141, 157 (1997).
[CrossRef]

1995 (1)

G. R. Morrison, M. Ebrahimzadeh, C. F. Rae, and M. H. Dunn, Opt. Commun. 118, 55 (1995).
[CrossRef]

1994 (1)

A. Sennaroglu, C. R. Pollock, and H. Nathel, IEEE J. Quantum Electron. 30, 1851 (1994).
[CrossRef]

1993 (1)

Bosenberg, W. R.

Burnham, R.

A. D. Hays, L. R. Marshall, and R. Burnham, in Advanced Solid State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), p. 255.

Dunn, M. H.

G. R. Morrison, M. Ebrahimzadeh, C. F. Rae, and M. H. Dunn, Opt. Commun. 118, 55 (1995).
[CrossRef]

Ebrahimzadeh, M.

G. R. Morrison, M. Ebrahimzadeh, C. F. Rae, and M. H. Dunn, Opt. Commun. 118, 55 (1995).
[CrossRef]

Guyer, D. R.

Hays, A. D.

A. D. Hays, L. R. Marshall, and R. Burnham, in Advanced Solid State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), p. 255.

Marshall, L. R.

A. D. Hays, L. R. Marshall, and R. Burnham, in Advanced Solid State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), p. 255.

McKinnie, I. T.

I. T. McKinnie and AM. L. Oien, Opt. Commun. 141, 157 (1997).
[CrossRef]

Morrison, G. R.

G. R. Morrison, M. Ebrahimzadeh, C. F. Rae, and M. H. Dunn, Opt. Commun. 118, 55 (1995).
[CrossRef]

Nathel, H.

A. Sennaroglu, C. R. Pollock, and H. Nathel, IEEE J. Quantum Electron. 30, 1851 (1994).
[CrossRef]

Oien, AM. L.

I. T. McKinnie and AM. L. Oien, Opt. Commun. 141, 157 (1997).
[CrossRef]

Pollock, C. R.

A. Sennaroglu, C. R. Pollock, and H. Nathel, IEEE J. Quantum Electron. 30, 1851 (1994).
[CrossRef]

Rae, C. F.

G. R. Morrison, M. Ebrahimzadeh, C. F. Rae, and M. H. Dunn, Opt. Commun. 118, 55 (1995).
[CrossRef]

Sennaroglu, A.

A. Sennaroglu, C. R. Pollock, and H. Nathel, IEEE J. Quantum Electron. 30, 1851 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Sennaroglu, C. R. Pollock, and H. Nathel, IEEE J. Quantum Electron. 30, 1851 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

I. T. McKinnie and AM. L. Oien, Opt. Commun. 141, 157 (1997).
[CrossRef]

G. R. Morrison, M. Ebrahimzadeh, C. F. Rae, and M. H. Dunn, Opt. Commun. 118, 55 (1995).
[CrossRef]

Other (1)

A. D. Hays, L. R. Marshall, and R. Burnham, in Advanced Solid State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), p. 255.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Fundamental pulse energy and (b) second-harmonic pulse energy as a function of 1064-nm pump-pulse energy. Results are shown for three different values of output coupling (OC).

Fig. 2
Fig. 2

(a) Fundamental and (b) second-harmonic pulse energy as a function of 1064-nm pump-pulse energy for different pump spot sizes in the forsterite rod.

Fig. 3
Fig. 3

Fundamental and second-harmonic pulse energy of the tuned Cr:forsterite laser as a function of fundamental wavelength.

Tables (1)

Tables Icon

Table 1 Parameters of Selected Nonlinear Crystals for Critically Phase-Matched Second-Harmonic Generation at 1235 nm

Metrics