Abstract

The transverse optical intensity profile in fibers affects the efficiency of acoustic mode excitation by the optical field and the subsequent response of the field to the excited acoustic modes. The magnitude of the electrostrictive nonlinear coefficient for a square-top intensity profile will exceed that of a Gaussian profile by a fact of 2. For current fiber designs the range of values for n2str at zero frequency is expected to vary from 0.43 to 0.71×10-16 cm2 W-1 based on mode profile alone. The relative contribution of electrostriction to the total nonlinear response electrostrictive+Kerr in fibers increases proportionately as the mode profile flattens.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992).
  2. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, Appl. Phys. B 54, 175 (1992).
    [CrossRef]
  3. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. N. Starodumov, Opt. Lett. 15, 314 (1990).
    [CrossRef]
  4. E. L. Buckland and R. W. Boyd, Opt. Lett. 22, 676 (1997).
    [CrossRef] [PubMed]
  5. A. Melloni, M. Martinelli, and A. Fellegara, Fiber Integr. Opt. 18, (1998).
  6. E. L. Buckland and R. W. Boyd, Opt. Lett. 21, 119 (1996).
    [CrossRef]
  7. A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, and M. Martinelli, Opt. Lett. 23, 691 (1998).
    [CrossRef]
  8. A. Fellagara and S. Wabnitz, Opt. Lett. 23, 1357 (1998).
    [CrossRef]
  9. Note that n2str as reported in Eq. 3(a) of Ref. 6 implicitly contains a factor of 1/2 that follows from the Gaussian optical mode. General agreement between the theoretical predictions in Refs. 6 and 7 occurs in spite of this factor-of-2 discrepancy in n2str. This agreement is due to an offsetting discrepancy in the value of ?e that is yet to be resolved.
  10. V. L. da Silva, Y. Liu, A. J. Antos, G. E. Berkey, and M. A. Newhouse, in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 202.
  11. “Mode field diameter, variable aperture in the far field,” (American National Standards Institute, New York, 1998).
  12. E.-G. Neumann, ed., Single-Mode Fibers (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

1998 (3)

1997 (1)

1996 (1)

1992 (1)

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, Appl. Phys. B 54, 175 (1992).
[CrossRef]

1990 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

Antos, A. J.

V. L. da Silva, Y. Liu, A. J. Antos, G. E. Berkey, and M. A. Newhouse, in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 202.

Berkey, G. E.

V. L. da Silva, Y. Liu, A. J. Antos, G. E. Berkey, and M. A. Newhouse, in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 202.

Boyd, R. W.

Buckland, E. L.

da Silva, V. L.

V. L. da Silva, Y. Liu, A. J. Antos, G. E. Berkey, and M. A. Newhouse, in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 202.

Dianov, E. M.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, Appl. Phys. B 54, 175 (1992).
[CrossRef]

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. N. Starodumov, Opt. Lett. 15, 314 (1990).
[CrossRef]

Fellagara, A.

Fellegara, A.

A. Melloni, M. Martinelli, and A. Fellegara, Fiber Integr. Opt. 18, (1998).

Frasca, M.

Garavaglia, A.

Liu, Y.

V. L. da Silva, Y. Liu, A. J. Antos, G. E. Berkey, and M. A. Newhouse, in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 202.

Luchnikov, A. V.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, Appl. Phys. B 54, 175 (1992).
[CrossRef]

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. N. Starodumov, Opt. Lett. 15, 314 (1990).
[CrossRef]

Martinelli, M.

A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, and M. Martinelli, Opt. Lett. 23, 691 (1998).
[CrossRef]

A. Melloni, M. Martinelli, and A. Fellegara, Fiber Integr. Opt. 18, (1998).

Melloni, A.

A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, and M. Martinelli, Opt. Lett. 23, 691 (1998).
[CrossRef]

A. Melloni, M. Martinelli, and A. Fellegara, Fiber Integr. Opt. 18, (1998).

Newhouse, M. A.

V. L. da Silva, Y. Liu, A. J. Antos, G. E. Berkey, and M. A. Newhouse, in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 202.

Pilipetskii, A. N.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, Appl. Phys. B 54, 175 (1992).
[CrossRef]

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. N. Starodumov, Opt. Lett. 15, 314 (1990).
[CrossRef]

Prokhorov, A. M.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, Appl. Phys. B 54, 175 (1992).
[CrossRef]

Starodumov, A. N.

Tonini, A.

Wabnitz, S.

Appl. Phys. B (1)

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, Appl. Phys. B 54, 175 (1992).
[CrossRef]

Fiber Integr. Opt. (1)

A. Melloni, M. Martinelli, and A. Fellegara, Fiber Integr. Opt. 18, (1998).

Opt. Lett. (5)

Other (6)

Note that n2str as reported in Eq. 3(a) of Ref. 6 implicitly contains a factor of 1/2 that follows from the Gaussian optical mode. General agreement between the theoretical predictions in Refs. 6 and 7 occurs in spite of this factor-of-2 discrepancy in n2str. This agreement is due to an offsetting discrepancy in the value of ?e that is yet to be resolved.

V. L. da Silva, Y. Liu, A. J. Antos, G. E. Berkey, and M. A. Newhouse, in Optical Fiber Communication Conference, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 202.

“Mode field diameter, variable aperture in the far field,” (American National Standards Institute, New York, 1998).

E.-G. Neumann, ed., Single-Mode Fibers (Springer-Verlag, Berlin, 1988).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).

R. W. Boyd, Nonlinear Optics (Academic, Boston, Mass., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(top) Acousto-optic overlap integrals -bq and (bottom) cq, calculated with the continuum-mode model.

Fig. 2
Fig. 2

Magnitude of the electrostrictive response H0;p and the strength of electrostriction relative to the Kerr response. The open circles are the exact calculations. The solid curve represents numerical results. The dashed lines indicate the regions of primary interest for current fiber designs.

Fig. 3
Fig. 3

Temporal variation in the refractive index owing to electrostriction driven by an optical impulse. The mode-field radius is ωff=3.5 µm. The ordinate is scaled with n2strH0;2=0.57×10-16 cm2 W-1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2ρ˜t2-ΓΔρ˜t-vs2Δρ˜=-γe24πΔE˜2,
ΔnΩ;a,p=n2strP0BΩAeffHΩ;a,p,
HΩ=An=1BnCnΩ2-Ωn2-2iΓnΩ.
HΩ;a,p=vs24π20bqcqΩ2-vs2q2-2iΓΩqdq.
Aeff=πωff222/p-2p.

Metrics