Abstract

The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm×5 cm×10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Gonzalez, R. L. Smith, D. G. Howitt, and S. D. Collins, Sensors Actuators A 66, 315 (1998).
    [CrossRef]
  2. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, J. Electrochem. Soc. 137, 3612, 3626 (1990).
    [CrossRef]
  3. C. González and S. D. Collins, IEEE Photon. Lett. 9, 616 (1997).
    [CrossRef]
  4. C. González and S. D. Collins, Laser Focus World 34(5), 187 (1997).
  5. C. González, R. J. Welty, R. L. Smith, and S. D. Collins, Proc. SPIE 3008, 171 (1997).
    [CrossRef]
  6. C. González and S. D. Collins, Opt. Lett. 22, 709 (1997).
    [CrossRef]
  7. F. Twyman, Prism and Lens Making, 2nd ed. (Hilger, London, 1988).
  8. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975), p. 556.

1998 (1)

C. Gonzalez, R. L. Smith, D. G. Howitt, and S. D. Collins, Sensors Actuators A 66, 315 (1998).
[CrossRef]

1997 (4)

C. González and S. D. Collins, IEEE Photon. Lett. 9, 616 (1997).
[CrossRef]

C. González and S. D. Collins, Laser Focus World 34(5), 187 (1997).

C. González, R. J. Welty, R. L. Smith, and S. D. Collins, Proc. SPIE 3008, 171 (1997).
[CrossRef]

C. González and S. D. Collins, Opt. Lett. 22, 709 (1997).
[CrossRef]

1990 (1)

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, J. Electrochem. Soc. 137, 3612, 3626 (1990).
[CrossRef]

Baumgartel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, J. Electrochem. Soc. 137, 3612, 3626 (1990).
[CrossRef]

Collins, S. D.

C. Gonzalez, R. L. Smith, D. G. Howitt, and S. D. Collins, Sensors Actuators A 66, 315 (1998).
[CrossRef]

C. González and S. D. Collins, IEEE Photon. Lett. 9, 616 (1997).
[CrossRef]

C. González and S. D. Collins, Laser Focus World 34(5), 187 (1997).

C. González, R. J. Welty, R. L. Smith, and S. D. Collins, Proc. SPIE 3008, 171 (1997).
[CrossRef]

C. González and S. D. Collins, Opt. Lett. 22, 709 (1997).
[CrossRef]

Csepregi, L.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, J. Electrochem. Soc. 137, 3612, 3626 (1990).
[CrossRef]

Gonzalez, C.

C. Gonzalez, R. L. Smith, D. G. Howitt, and S. D. Collins, Sensors Actuators A 66, 315 (1998).
[CrossRef]

González, C.

C. González and S. D. Collins, IEEE Photon. Lett. 9, 616 (1997).
[CrossRef]

C. González and S. D. Collins, Opt. Lett. 22, 709 (1997).
[CrossRef]

C. González, R. J. Welty, R. L. Smith, and S. D. Collins, Proc. SPIE 3008, 171 (1997).
[CrossRef]

C. González and S. D. Collins, Laser Focus World 34(5), 187 (1997).

Heuberger, A.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, J. Electrochem. Soc. 137, 3612, 3626 (1990).
[CrossRef]

Howitt, D. G.

C. Gonzalez, R. L. Smith, D. G. Howitt, and S. D. Collins, Sensors Actuators A 66, 315 (1998).
[CrossRef]

Oppenheim, A. V.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975), p. 556.

Schafer, R. W.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975), p. 556.

Seidel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, J. Electrochem. Soc. 137, 3612, 3626 (1990).
[CrossRef]

Smith, R. L.

C. Gonzalez, R. L. Smith, D. G. Howitt, and S. D. Collins, Sensors Actuators A 66, 315 (1998).
[CrossRef]

C. González, R. J. Welty, R. L. Smith, and S. D. Collins, Proc. SPIE 3008, 171 (1997).
[CrossRef]

Twyman, F.

F. Twyman, Prism and Lens Making, 2nd ed. (Hilger, London, 1988).

Welty, R. J.

C. González, R. J. Welty, R. L. Smith, and S. D. Collins, Proc. SPIE 3008, 171 (1997).
[CrossRef]

IEEE Photon. Lett. (1)

C. González and S. D. Collins, IEEE Photon. Lett. 9, 616 (1997).
[CrossRef]

J. Electrochem. Soc. (1)

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, J. Electrochem. Soc. 137, 3612, 3626 (1990).
[CrossRef]

Laser Focus World (1)

C. González and S. D. Collins, Laser Focus World 34(5), 187 (1997).

Opt. Lett. (1)

Proc. SPIE (1)

C. González, R. J. Welty, R. L. Smith, and S. D. Collins, Proc. SPIE 3008, 171 (1997).
[CrossRef]

Sensors Actuators A (1)

C. Gonzalez, R. L. Smith, D. G. Howitt, and S. D. Collins, Sensors Actuators A 66, 315 (1998).
[CrossRef]

Other (2)

F. Twyman, Prism and Lens Making, 2nd ed. (Hilger, London, 1988).

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1975), p. 556.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of a typical FTS with a Michelson interferometer design. As the mirror moves, a monochromatic light source will experience a cyclic intensity distribution at the detector as a result of interference.

Fig. 2
Fig. 2

Optical photograph of an xyz microstage. Inset, scanning-electron microgram of the xy dovetail structure.

Fig. 3
Fig. 3

Power spectrum for a He–Ne laser. The bandpass of the instrumentation was 1000–400  nm.

Fig. 4
Fig. 4

A, Interferograms and Fourier-transformed power spectra for a 650-nm interference filter. The interferogram and the spectrum for the microfabricated FTS are shown. B, The same filter compared with an interferogram and spectrum for a commercial FTS (Bruker).

Fig. 5
Fig. 5

Photograph of a Fourier-transform interferometer assembled upon a 10.16-cm silicon wafer by microjoinery. An external He–Ne laser beam shows the optical alignment of the components. Although the device shown is not functional (the optical source and the sample chamber are missing), it demonstrates the concept and feasibility of using microjoinery to fabricate miniature optical systems.

Metrics