Abstract

We present a frequency-domain optical method for real-time noninvasive measurement of absolute tissue and arterial saturation. This method is based on quantitative measurement of the tissue absorption spectrum (for tissue saturation) and of the amplitude of the arterial-pulsation-induced absorption oscillations (for arterial saturation) at eight wavelengths in the range 633–841  nm. We report results obtained from readings taken from the forehead of a healthy volunteer, showing baseline saturation values of 74.7±0.2% (tissue) and 96.9±0.5% (arterial). These values dropped to minimum values of 71.6±0.2% and 90.0±0.2%, respectively, after 1  min of reduced inspired oxygen concentration [10% (by volume) O2 from a baseline value of 21% O2].

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Millikan, Rev. Sci. Instrum. 13, 434 (1942).
    [CrossRef]
  2. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, Opt. Eng. 34, 32 (1995).
    [CrossRef]
  3. M. Miwa, Y. Ueda, and B. Chance, Proc. SPIE 2389, 142 (1995).
    [CrossRef]
  4. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, Med. Phys. 22, 1209 (1995).
    [CrossRef] [PubMed]
  5. M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, Proc. SPIE 3194, 18 (1998).
    [CrossRef]
  6. T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, in Abstracts of the Japanese Society of Medical Electronics and Biological Engineering (Japanese Society of Medical Electronics and Biological Engineering, Tokyo, 1974), p. 90.
  7. Y. Mendelson, Clin. Chem. (Winston-Salem, N.C.) 38, 1601 (1992).
    [PubMed]
  8. R. K. Webb, A. C. Ralston, and W. B. Runciman, Anaesthesia 46, 207 (1991).
    [CrossRef] [PubMed]
  9. M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, Proc. SPIE 2979, 807 (1997).
    [CrossRef]
  10. D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New Optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” in Proc. SPIE3597 (to be published).
  11. S. Fantini, M. A. Franceschini, and E. Gratton, J. Opt. Soc. Am. B 11, 2128 (1994).
    [CrossRef]
  12. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, Phys. Med. Biol. 33, 1433 (1988).
    [CrossRef] [PubMed]

1998 (1)

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, Proc. SPIE 3194, 18 (1998).
[CrossRef]

1997 (1)

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, Proc. SPIE 2979, 807 (1997).
[CrossRef]

1995 (3)

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, Opt. Eng. 34, 32 (1995).
[CrossRef]

M. Miwa, Y. Ueda, and B. Chance, Proc. SPIE 2389, 142 (1995).
[CrossRef]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, Med. Phys. 22, 1209 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

Y. Mendelson, Clin. Chem. (Winston-Salem, N.C.) 38, 1601 (1992).
[PubMed]

1991 (1)

R. K. Webb, A. C. Ralston, and W. B. Runciman, Anaesthesia 46, 207 (1991).
[CrossRef] [PubMed]

1988 (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, Phys. Med. Biol. 33, 1433 (1988).
[CrossRef] [PubMed]

1942 (1)

G. A. Millikan, Rev. Sci. Instrum. 13, 434 (1942).
[CrossRef]

Aoyagi, T.

T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, in Abstracts of the Japanese Society of Medical Electronics and Biological Engineering (Japanese Society of Medical Electronics and Biological Engineering, Tokyo, 1974), p. 90.

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, Phys. Med. Biol. 33, 1433 (1988).
[CrossRef] [PubMed]

Barbieri, B.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, Proc. SPIE 2979, 807 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, Opt. Eng. 34, 32 (1995).
[CrossRef]

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New Optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” in Proc. SPIE3597 (to be published).

Cerussi, A. E.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New Optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” in Proc. SPIE3597 (to be published).

Chance, B.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, Med. Phys. 22, 1209 (1995).
[CrossRef] [PubMed]

M. Miwa, Y. Ueda, and B. Chance, Proc. SPIE 2389, 142 (1995).
[CrossRef]

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, Phys. Med. Biol. 33, 1433 (1988).
[CrossRef] [PubMed]

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, Phys. Med. Biol. 33, 1433 (1988).
[CrossRef] [PubMed]

Donzelli, G. P.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, Proc. SPIE 2979, 807 (1997).
[CrossRef]

Fantini, S.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, Proc. SPIE 2979, 807 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, Opt. Eng. 34, 32 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, and E. Gratton, J. Opt. Soc. Am. B 11, 2128 (1994).
[CrossRef]

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New Optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” in Proc. SPIE3597 (to be published).

Franceschini, M. A.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, Proc. SPIE 2979, 807 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, Opt. Eng. 34, 32 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, and E. Gratton, J. Opt. Soc. Am. B 11, 2128 (1994).
[CrossRef]

Gratton, E.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, Proc. SPIE 2979, 807 (1997).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, Opt. Eng. 34, 32 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, and E. Gratton, J. Opt. Soc. Am. B 11, 2128 (1994).
[CrossRef]

Heekeren, H. R.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, Proc. SPIE 3194, 18 (1998).
[CrossRef]

Hielscher, A. H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, Med. Phys. 22, 1209 (1995).
[CrossRef] [PubMed]

Horst, S.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, Proc. SPIE 3194, 18 (1998).
[CrossRef]

Hueber, D. M.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New Optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” in Proc. SPIE3597 (to be published).

Jacques, S. L.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, Med. Phys. 22, 1209 (1995).
[CrossRef] [PubMed]

Kishi, M.

T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, in Abstracts of the Japanese Society of Medical Electronics and Biological Engineering (Japanese Society of Medical Electronics and Biological Engineering, Tokyo, 1974), p. 90.

Kohl, M.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, Proc. SPIE 3194, 18 (1998).
[CrossRef]

Liu, H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, Med. Phys. 22, 1209 (1995).
[CrossRef] [PubMed]

Maier, J. S.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, Opt. Eng. 34, 32 (1995).
[CrossRef]

Mantulin, W. W.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, Proc. SPIE 2979, 807 (1997).
[CrossRef]

Mendelson, Y.

Y. Mendelson, Clin. Chem. (Winston-Salem, N.C.) 38, 1601 (1992).
[PubMed]

Millikan, G. A.

G. A. Millikan, Rev. Sci. Instrum. 13, 434 (1942).
[CrossRef]

Miwa, M.

M. Miwa, Y. Ueda, and B. Chance, Proc. SPIE 2389, 142 (1995).
[CrossRef]

Nolte, C.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, Proc. SPIE 3194, 18 (1998).
[CrossRef]

Obrig, H.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, Proc. SPIE 3194, 18 (1998).
[CrossRef]

Pratesi, S.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, Proc. SPIE 2979, 807 (1997).
[CrossRef]

Ralston, A. C.

R. K. Webb, A. C. Ralston, and W. B. Runciman, Anaesthesia 46, 207 (1991).
[CrossRef] [PubMed]

Runciman, W. B.

R. K. Webb, A. C. Ralston, and W. B. Runciman, Anaesthesia 46, 207 (1991).
[CrossRef] [PubMed]

Scholz, U.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, Proc. SPIE 3194, 18 (1998).
[CrossRef]

Tittel, F. K.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, Med. Phys. 22, 1209 (1995).
[CrossRef] [PubMed]

Ueda, Y.

M. Miwa, Y. Ueda, and B. Chance, Proc. SPIE 2389, 142 (1995).
[CrossRef]

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, Phys. Med. Biol. 33, 1433 (1988).
[CrossRef] [PubMed]

Villringer, A.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, Proc. SPIE 3194, 18 (1998).
[CrossRef]

Walker, S. A.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, Opt. Eng. 34, 32 (1995).
[CrossRef]

Wallace, D.

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, Proc. SPIE 2979, 807 (1997).
[CrossRef]

Watanabe, S.

T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, in Abstracts of the Japanese Society of Medical Electronics and Biological Engineering (Japanese Society of Medical Electronics and Biological Engineering, Tokyo, 1974), p. 90.

Webb, R. K.

R. K. Webb, A. C. Ralston, and W. B. Runciman, Anaesthesia 46, 207 (1991).
[CrossRef] [PubMed]

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, Phys. Med. Biol. 33, 1433 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, Phys. Med. Biol. 33, 1433 (1988).
[CrossRef] [PubMed]

Yamaguchi, K.

T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, in Abstracts of the Japanese Society of Medical Electronics and Biological Engineering (Japanese Society of Medical Electronics and Biological Engineering, Tokyo, 1974), p. 90.

Anaesthesia (1)

R. K. Webb, A. C. Ralston, and W. B. Runciman, Anaesthesia 46, 207 (1991).
[CrossRef] [PubMed]

Clin. Chem. (Winston-Salem, N.C.) (1)

Y. Mendelson, Clin. Chem. (Winston-Salem, N.C.) 38, 1601 (1992).
[PubMed]

J. Opt. Soc. Am. B (1)

Med. Phys. (1)

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, and F. K. Tittel, Med. Phys. 22, 1209 (1995).
[CrossRef] [PubMed]

Opt. Eng. (1)

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, Opt. Eng. 34, 32 (1995).
[CrossRef]

Phys. Med. Biol. (1)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, Phys. Med. Biol. 33, 1433 (1988).
[CrossRef] [PubMed]

Proc. SPIE (3)

M. Miwa, Y. Ueda, and B. Chance, Proc. SPIE 2389, 142 (1995).
[CrossRef]

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Obrig, and A. Villringer, Proc. SPIE 3194, 18 (1998).
[CrossRef]

M. A. Franceschini, D. Wallace, B. Barbieri, S. Fantini, W. W. Mantulin, S. Pratesi, G. P. Donzelli, and E. Gratton, Proc. SPIE 2979, 807 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

G. A. Millikan, Rev. Sci. Instrum. 13, 434 (1942).
[CrossRef]

Other (2)

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New Optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements,” in Proc. SPIE3597 (to be published).

T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, in Abstracts of the Japanese Society of Medical Electronics and Biological Engineering (Japanese Society of Medical Electronics and Biological Engineering, Tokyo, 1974), p. 90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Block diagram of the frequency-domain tissue spectrometer and geometric arrangement of the source and detector fibers on the forehead. The frequency synthesizer modulates the intensity of the laser diodes at a frequency of 110  MHz; the second dynode of the two photomultiplier tube detectors (pmt a and pmt b), at a frequency of 110.005  MHz. The 16 laser diodes (2  per wavelength) are multiplexed at a rate of 71.4  Hz to time share the two parallel detectors.

Fig. 2
Fig. 2

Effect of the reduced inspired oxygen concentration [1  min of 10% (by volume) O2 from a baseline value of 21%] on the tissue absorption spectrum (tissue μa) and on the spectrum of the amplitude of the pulsed absorption component at the heartbeat frequency (arterial Δμa). The symbols are the experimental data measured from the forehead, and the curves are the best fits of the data with a linear combination of the extinction spectra of HbO2 and Hb. The saturation values corresponding to the four fitted spectra are reported in Table  1.

Fig. 3
Fig. 3

Time traces of Y (measured with frequency-domain tissue spectroscopy) and SaO2 (measured with frequency-domain tissue spectroscopy from the forehead and with a commercial pulse oximeter on the subject’s finger) during the protocol involving a change in the concentration of inspired oxygen. The shaded area indicates the period of reduced inspired oxygen concentration (10% by volume from a baseline value of 21%).

Tables (1)

Tables Icon

Table 1 Tissue Saturation Y and Arterial Saturation (SaO 2 ) in the Forehead as Measured by Frequency-Domain Tissue Spectroscopy (FDTS) and Arterial Saturation Measured from the Index Finger by a Commercial Pulse Oximeter (Pulse Ox.) a

Metrics