Abstract

A simple technique for reducing the loss that is due to depolarization resulting from thermally induced stress birefringence in solid-state lasers is reported. The technique uses a single intracavity quarter-wave plate with its fast or slow axis aligned parallel to the preferred plane of polarization, defined by an intracavity polarizer. This technique has been applied to a diode-bar-pumped Nd:YAG laser operating at 946  nm, resulting in a measured reduction in depolarization loss from 1.7% to 0.0006% and yielding a diffraction-limited, TEM00, linearly polarized output power of 2.9  W for an incident pump power of 14.3  W.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996), pp. 393–412.
    [CrossRef]
  2. W. C. Scott and M. de Wit, Appl. Phys. Lett. 18, 3 (1971).
    [CrossRef]
  3. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
    [CrossRef]
  4. E. A. Lundstrom, “Wave plate for correcting thermally induced stress birefringence in solid state lasers,” U.S. patent4,408,334 (October4, 1983).
  5. G. W. Ross, M. Pollnau, P. G. R. Smith, W. A. Clarkson, P. E. Britton, and D. C. Hanna, Opt. Lett. 23, 171 (1998).
    [CrossRef]
  6. T. Kellner, F. Heine, V. Ostroumov, G. Huber, and T. Halldorsson, in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 46.
  7. W. A. Clarkson and D. C. Hanna, Opt. Lett. 21, 375 (1996).
    [CrossRef] [PubMed]

1998 (1)

1996 (2)

W. A. Clarkson and D. C. Hanna, Opt. Lett. 21, 375 (1996).
[CrossRef] [PubMed]

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

1971 (1)

W. C. Scott and M. de Wit, Appl. Phys. Lett. 18, 3 (1971).
[CrossRef]

Britton, P. E.

Clarkson, W. A.

de Wit, M.

W. C. Scott and M. de Wit, Appl. Phys. Lett. 18, 3 (1971).
[CrossRef]

Dong, S.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Halldorsson, T.

T. Kellner, F. Heine, V. Ostroumov, G. Huber, and T. Halldorsson, in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 46.

Hanna, D. C.

Heine, F.

T. Kellner, F. Heine, V. Ostroumov, G. Huber, and T. Halldorsson, in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 46.

Huber, G.

T. Kellner, F. Heine, V. Ostroumov, G. Huber, and T. Halldorsson, in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 46.

Kellner, T.

T. Kellner, F. Heine, V. Ostroumov, G. Huber, and T. Halldorsson, in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 46.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996), pp. 393–412.
[CrossRef]

Kugler, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Lü, Q.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Lundstrom, E. A.

E. A. Lundstrom, “Wave plate for correcting thermally induced stress birefringence in solid state lasers,” U.S. patent4,408,334 (October4, 1983).

Müller, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Ostroumov, V.

T. Kellner, F. Heine, V. Ostroumov, G. Huber, and T. Halldorsson, in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 46.

Pollnau, M.

Ross, G. W.

Scott, W. C.

W. C. Scott and M. de Wit, Appl. Phys. Lett. 18, 3 (1971).
[CrossRef]

Smith, P. G. R.

Weber, H.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Wittrock, U.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

W. C. Scott and M. de Wit, Appl. Phys. Lett. 18, 3 (1971).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Other (3)

E. A. Lundstrom, “Wave plate for correcting thermally induced stress birefringence in solid state lasers,” U.S. patent4,408,334 (October4, 1983).

T. Kellner, F. Heine, V. Ostroumov, G. Huber, and T. Halldorsson, in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), p. 46.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin, 1996), pp. 393–412.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the arrangement for reducing depolarization loss that is due to stress-induced birefringence.

Fig. 2
Fig. 2

Cross section of the laser rod. The beam that is incident upon the laser rod is linearly polarized in the x direction.

Fig. 3
Fig. 3

Diode-pumped Nd:YAG laser at 946  nm with a λ/4 plate for reducing the depolarization loss that is due to stress-induced birefringence. HR, high reflector.

Fig. 4
Fig. 4

Laser output power versus incident pump power. Inset: Depolarization loss versus incident pump power without the λ/4 plate present in the cavity.

Metrics