Abstract

We describe a modified confocal microscope in which depth discrimination results from matched filtering by a volume hologram instead of a pinhole filter. The depth resolution depends on the numerical aperture of the objective lens and the thickness of the hologram, and the dynamic range is determined by the diffraction efficiency. We calculate the depth response of the volume holographic confocal microscope, verify it experimentally, and present the scanned image of a silicon wafer with microfabricated surface structures.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson and A. R. Carlini, Opt. Lett. 12, 227 (1987)T. Wilson, in Confocal Microscopy, T. Wilson, ed. (Academic, San Diego, Calif., 1990), Chap.??3, pp. 93–141.
    [CrossRef] [PubMed]
  2. C. J. R. Sheppard and C. J. Cogswell, in Confocal Microscopy, T. Wilson, ed. (Academic, San Diego, Calif., 1990), Chap.??4, pp. 143–169.
  3. N. P. Suh, A. C. Bell, and D. C. Gossard, Trans. ASME 100, 127 (1978)N. P. Suh, The Principles of Design (Oxford University, New York, 1990).
    [CrossRef]
  4. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley-Interscience, Paris, 1977).
  5. K. Meerholz, B. L. Volodin, B. S. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
    [CrossRef]
  6. G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE (to be published).
  7. Z. S. Hegedus and V. Sarafis, J. Opt. Soc. Am. A 3, 1892 (1986).
    [CrossRef]
  8. J. G. Walker, E. R. Pike, R. E. Davies, M. R. Young, G. J. Brakenhoff, and M. Bertero, J. Opt. Soc. Am. A 10, 59 (1993).
    [CrossRef]

1994 (1)

K. Meerholz, B. L. Volodin, B. S. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

1993 (1)

1987 (1)

1986 (1)

1978 (1)

N. P. Suh, A. C. Bell, and D. C. Gossard, Trans. ASME 100, 127 (1978)N. P. Suh, The Principles of Design (Oxford University, New York, 1990).
[CrossRef]

Barbastathis, G.

G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE (to be published).

Bell, A. C.

N. P. Suh, A. C. Bell, and D. C. Gossard, Trans. ASME 100, 127 (1978)N. P. Suh, The Principles of Design (Oxford University, New York, 1990).
[CrossRef]

Bertero, M.

Brady, D. J.

G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE (to be published).

Brakenhoff, G. J.

Carlini, A. R.

Cogswell, C. J.

C. J. R. Sheppard and C. J. Cogswell, in Confocal Microscopy, T. Wilson, ed. (Academic, San Diego, Calif., 1990), Chap.??4, pp. 143–169.

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley-Interscience, Paris, 1977).

Davies, R. E.

Diu, B.

C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley-Interscience, Paris, 1977).

Gossard, D. C.

N. P. Suh, A. C. Bell, and D. C. Gossard, Trans. ASME 100, 127 (1978)N. P. Suh, The Principles of Design (Oxford University, New York, 1990).
[CrossRef]

Hegedus, Z. S.

Kippelen, B. S.

K. Meerholz, B. L. Volodin, B. S. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

Laloë, F.

C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley-Interscience, Paris, 1977).

Meerholz, K.

K. Meerholz, B. L. Volodin, B. S. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

Peyghambarian, N.

K. Meerholz, B. L. Volodin, B. S. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

Pike, E. R.

Sarafis, V.

Sheppard, C. J. R.

C. J. R. Sheppard and C. J. Cogswell, in Confocal Microscopy, T. Wilson, ed. (Academic, San Diego, Calif., 1990), Chap.??4, pp. 143–169.

Suh, N. P.

N. P. Suh, A. C. Bell, and D. C. Gossard, Trans. ASME 100, 127 (1978)N. P. Suh, The Principles of Design (Oxford University, New York, 1990).
[CrossRef]

Volodin, B. L.

K. Meerholz, B. L. Volodin, B. S. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

Walker, J. G.

Wilson, T.

Young, M. R.

J. Opt. Soc. Am. A (2)

Nature (1)

K. Meerholz, B. L. Volodin, B. S. Kippelen, and N. Peyghambarian, Nature 371, 497 (1994).
[CrossRef]

Opt. Lett. (1)

Trans. ASME (1)

N. P. Suh, A. C. Bell, and D. C. Gossard, Trans. ASME 100, 127 (1978)N. P. Suh, The Principles of Design (Oxford University, New York, 1990).
[CrossRef]

Other (3)

C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley-Interscience, Paris, 1977).

C. J. R. Sheppard and C. J. Cogswell, in Confocal Microscopy, T. Wilson, ed. (Academic, San Diego, Calif., 1990), Chap.??4, pp. 143–169.

G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Volume holographic confocal microscope without a pinhole at the detector plane.

Fig. 2
Fig. 2

Bragg mismatch in the k sphere.

Fig. 3
Fig. 3

Collected intensity as a function of object depth δ for the volume holographic confocal microscope with (a) 25μm and (b) 1-mm pinholes and for the confocal microscope (with a 45°-oriented mirror replacing the volume hologram) with (c) 25μm (d) 1-mm pinholes. Location δ=0 corresponds to the depth of the reference surface (at the focal plane of the objective lens). All curves are normalized such that their peak values equal  1.

Fig. 4
Fig. 4

Two-dimensional scanning confocal image (reconstructed intensity map) of the silicon microstructure obtained with the volume holographic microscope shown in Fig.  1

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

kd=2πλ1-v22x^-vy^-u2+v22z^.
Δkx=k-kd=2πλu+v22.
ηδ=η0π02πdθ01dρ ρsinc2NA2δρ2LλA×cosθ+NA2δρsin2θ2A,
δFWHM=1.09×λNA2.

Metrics