Abstract

An encrypted optical memory system using double random phase codes in the Fresnel domain is proposed. In this system, two random phase codes and their positions form three-dimensional keys for encryption of images and are used as keys to recover the original data. The third dimension is the positions of the codes, which can have as many as three degrees of freedom. Original images encrypted by use of the two phase codes located in the Fresnel domain are stored holographically in a photorefractive material. We demonstrate in preliminary experiments encryption and decryption of optical memory in a LiNbO3:Fe photorefractive crystal by use of angular multiplexing.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, Opt. Lett. 11, 915 (1993).
    [CrossRef]
  2. J.-J. R. Drolet, E. Chuang, G. Barbastathis, and D. Psaltis, Opt. Lett. 22, 552 (1997).
    [CrossRef] [PubMed]
  3. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
    [CrossRef]
  4. J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
    [CrossRef] [PubMed]
  5. B. Javidi and J. L. Horner, Opt. Eng. 33, 1752 (1994).
    [CrossRef]
  6. P. Réfrégier and B. Javidi, Opt. Lett. 20, 767 (1995).
    [CrossRef]
  7. H.-Y. Li, Y. Qiao, and D. Psaltis, Appl. Opt. 32, 5026 (1993).
    [CrossRef] [PubMed]
  8. C. L. Wilson, C. I. Watson, and E. G. Paek, Proc. SPIE 3073, 373 (1997).
    [CrossRef]
  9. B. Javidi, G. Zhang, and J. Li, Appl. Opt. 36, 1054 (1997).
    [CrossRef] [PubMed]
  10. J. F. Heanue, M. C. Bashaw, and L. Hesselink, Appl. Opt. 34, 6012 (1995).
    [CrossRef] [PubMed]
  11. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  12. J. E. Ford, Y. Fainman, and S. H. Lee, Opt. Lett. 15, 1088 (1990).
    [CrossRef] [PubMed]
  13. H. Lee and S. K. Jin, Appl. Phys. Lett. 62, 2191 (1993).
    [CrossRef]
  14. T. F. Krile, M. O. Hagler, W. D. Redus, and J. F. Walkup, Appl. Opt. 18, 52 (1979).
    [CrossRef] [PubMed]
  15. Y. H. Kang, K. H. Kim, and B. Lee, Opt. Lett. 22, 739 (1997).
    [CrossRef] [PubMed]
  16. F. Zhao and K. Sayano, Opt. Lett. 21, 1295 (1996).
    [CrossRef] [PubMed]

1997 (4)

1996 (1)

1995 (2)

1994 (2)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

B. Javidi and J. L. Horner, Opt. Eng. 33, 1752 (1994).
[CrossRef]

1993 (3)

H.-Y. Li, Y. Qiao, and D. Psaltis, Appl. Opt. 32, 5026 (1993).
[CrossRef] [PubMed]

H. Lee and S. K. Jin, Appl. Phys. Lett. 62, 2191 (1993).
[CrossRef]

F. H. Mok, Opt. Lett. 11, 915 (1993).
[CrossRef]

1991 (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
[CrossRef]

1990 (1)

1979 (1)

Barbastathis, G.

Bashaw, M. C.

Chuang, E.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
[CrossRef]

Drolet, J.-J. R.

Fainman, Y.

Ford, J. E.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Hagler, M. O.

Heanue, J. F.

Hesselink, L.

Horner, J. L.

B. Javidi and J. L. Horner, Opt. Eng. 33, 1752 (1994).
[CrossRef]

Javidi, B.

Jin, S. K.

H. Lee and S. K. Jin, Appl. Phys. Lett. 62, 2191 (1993).
[CrossRef]

Kang, Y. H.

Kim, K. H.

Krile, T. F.

Lee, B.

Lee, H.

H. Lee and S. K. Jin, Appl. Phys. Lett. 62, 2191 (1993).
[CrossRef]

Lee, S. H.

Li, H.-Y.

Li, J.

Mok, F. H.

F. H. Mok, Opt. Lett. 11, 915 (1993).
[CrossRef]

Paek, E. G.

C. L. Wilson, C. I. Watson, and E. G. Paek, Proc. SPIE 3073, 373 (1997).
[CrossRef]

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
[CrossRef]

Psaltis, D.

Qiao, Y.

Redus, W. D.

Réfrégier, P.

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
[CrossRef]

Sayano, K.

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
[CrossRef]

Walkup, J. F.

Watson, C. I.

C. L. Wilson, C. I. Watson, and E. G. Paek, Proc. SPIE 3073, 373 (1997).
[CrossRef]

Wilson, C. L.

C. L. Wilson, C. I. Watson, and E. G. Paek, Proc. SPIE 3073, 373 (1997).
[CrossRef]

Zhang, G.

Zhao, F.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

H. Lee and S. K. Jin, Appl. Phys. Lett. 62, 2191 (1993).
[CrossRef]

Opt. Commun. (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
[CrossRef]

Opt. Eng. (1)

B. Javidi and J. L. Horner, Opt. Eng. 33, 1752 (1994).
[CrossRef]

Opt. Lett. (6)

Proc. SPIE (1)

C. L. Wilson, C. I. Watson, and E. G. Paek, Proc. SPIE 3073, 373 (1997).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, Science 265, 749 (1994).
[CrossRef] [PubMed]

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup: M1–M6, mirrors; BE, beam expander; BS3, beam splitter. See text for other definitions.

Fig. 2
Fig. 2

Original images to be encrypted.

Fig. 3
Fig. 3

Encrypted images.

Fig. 4
Fig. 4

Images decrypted by use of the same phase mask with the same location used in the recording.

Fig. 5
Fig. 5

Decrypted images when (a) RPM1 and (b) RPM2 were shifted 40 μm along the direction perpendicular to the optical axis.

Fig. 6
Fig. 6

Decrypted images when (a) RPM1 and (b) RPM2 were shifted 3.7  mm along the optical axis.

Fig. 7
Fig. 7

Decrypted images from the angularly multiplexed data with (a) the same masks and (b) different masks.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V=Lx/ΔxLy/ΔyNz,
Nz=L/Δz,
N=V2.

Metrics