Abstract

We experimentally demonstrate reduction of the polarization sensitivity of a nonlinear optical loop mirror (NOLM) from 5 to 0.5  dB by use of 550  m of twisted dispersion-shifted fiber with a twist rate of 8 turns/m (24  turns/beat length). The twisting of the fiber induces circular birefringence and equates the parallel- and the orthogonal-polarization nonlinear phase-shift terms. Experimental results show that the polarization sensitivity monotonically decreases from 5  dB for nontwisted fiber to 0.5  dB for fiber that is twisted at a rate of 8  turns/m, and the twist rate should be more than 4  turns/m (>10 turns/beat length) for emulation of circularly polarized fiber. The minimum polarization sensitivity occurs when the control-pulse polarization is aligned with one of the eigenmodes of the twisted fiber. With the fiber twisted at a rate of 8  turns/m in the NOLM, the nonlinear transmission is 23% at a switching energy of 4  pJ/pulse. Simulations confirm the observed behavior and show that the remaining polarization sensitivity results from energy transfer between orthogonal modes of the signal pulse.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Blow, N. J. Doran, and B. P. Nelson, Electron. Lett. 26, 962 (1990).
    [CrossRef]
  2. K. Uchiyama, H. Takara, K. Kawanishi, T. Morioka, and M. Saruwatari, Electron. Lett. 28, 1864 (1992).
    [CrossRef]
  3. H. Bülow and G. Veith, Electron. Lett. 29, 589 (1993).
    [CrossRef]
  4. B.-E. Olsson and P. A. Andrekson, in Optical Fiber Comunication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper FA 7.
  5. B.-E. Olsson and P. A. Andrekson, IEEE Photon. Technol. Lett. 9, 764 (1997).
    [CrossRef]
  6. N. A. Whitaker, P. M. W. French, M. C. Gabriel, and H. Avramopoulos, IEEE Photon. Technol. Lett. 4, 260 (1992).
    [CrossRef]
  7. C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, Opt. Lett. 15, 477 (1990).
    [CrossRef] [PubMed]
  8. R. Ulrich and A. Simon, Appl. Opt. 18, 2241 (1979).
    [CrossRef] [PubMed]
  9. L. F. Mollenauer, J. P. Gordon, and F. Heismann, Opt. Lett. 20, 2060 (1995).
    [CrossRef] [PubMed]

1997 (1)

B.-E. Olsson and P. A. Andrekson, IEEE Photon. Technol. Lett. 9, 764 (1997).
[CrossRef]

1995 (1)

1993 (1)

H. Bülow and G. Veith, Electron. Lett. 29, 589 (1993).
[CrossRef]

1992 (2)

K. Uchiyama, H. Takara, K. Kawanishi, T. Morioka, and M. Saruwatari, Electron. Lett. 28, 1864 (1992).
[CrossRef]

N. A. Whitaker, P. M. W. French, M. C. Gabriel, and H. Avramopoulos, IEEE Photon. Technol. Lett. 4, 260 (1992).
[CrossRef]

1990 (2)

C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, Opt. Lett. 15, 477 (1990).
[CrossRef] [PubMed]

K. J. Blow, N. J. Doran, and B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

1979 (1)

Andrekson, P. A.

B.-E. Olsson and P. A. Andrekson, IEEE Photon. Technol. Lett. 9, 764 (1997).
[CrossRef]

B.-E. Olsson and P. A. Andrekson, in Optical Fiber Comunication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper FA 7.

Avramopoulos, H.

N. A. Whitaker, P. M. W. French, M. C. Gabriel, and H. Avramopoulos, IEEE Photon. Technol. Lett. 4, 260 (1992).
[CrossRef]

Blow, K. J.

K. J. Blow, N. J. Doran, and B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

Bülow, H.

H. Bülow and G. Veith, Electron. Lett. 29, 589 (1993).
[CrossRef]

Chen, C.-J.

Doran, N. J.

K. J. Blow, N. J. Doran, and B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

French, P. M. W.

N. A. Whitaker, P. M. W. French, M. C. Gabriel, and H. Avramopoulos, IEEE Photon. Technol. Lett. 4, 260 (1992).
[CrossRef]

Gabriel, M. C.

N. A. Whitaker, P. M. W. French, M. C. Gabriel, and H. Avramopoulos, IEEE Photon. Technol. Lett. 4, 260 (1992).
[CrossRef]

Gordon, J. P.

Heismann, F.

Kawanishi, K.

K. Uchiyama, H. Takara, K. Kawanishi, T. Morioka, and M. Saruwatari, Electron. Lett. 28, 1864 (1992).
[CrossRef]

Menyuk, C. R.

Mollenauer, L. F.

Morioka, T.

K. Uchiyama, H. Takara, K. Kawanishi, T. Morioka, and M. Saruwatari, Electron. Lett. 28, 1864 (1992).
[CrossRef]

Nelson, B. P.

K. J. Blow, N. J. Doran, and B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

Olsson, B.-E.

B.-E. Olsson and P. A. Andrekson, IEEE Photon. Technol. Lett. 9, 764 (1997).
[CrossRef]

B.-E. Olsson and P. A. Andrekson, in Optical Fiber Comunication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper FA 7.

Saruwatari, M.

K. Uchiyama, H. Takara, K. Kawanishi, T. Morioka, and M. Saruwatari, Electron. Lett. 28, 1864 (1992).
[CrossRef]

Simon, A.

Takara, H.

K. Uchiyama, H. Takara, K. Kawanishi, T. Morioka, and M. Saruwatari, Electron. Lett. 28, 1864 (1992).
[CrossRef]

Uchiyama, K.

K. Uchiyama, H. Takara, K. Kawanishi, T. Morioka, and M. Saruwatari, Electron. Lett. 28, 1864 (1992).
[CrossRef]

Ulrich, R.

Veith, G.

H. Bülow and G. Veith, Electron. Lett. 29, 589 (1993).
[CrossRef]

Wai, P. K. A.

Whitaker, N. A.

N. A. Whitaker, P. M. W. French, M. C. Gabriel, and H. Avramopoulos, IEEE Photon. Technol. Lett. 4, 260 (1992).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (3)

K. J. Blow, N. J. Doran, and B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

K. Uchiyama, H. Takara, K. Kawanishi, T. Morioka, and M. Saruwatari, Electron. Lett. 28, 1864 (1992).
[CrossRef]

H. Bülow and G. Veith, Electron. Lett. 29, 589 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B.-E. Olsson and P. A. Andrekson, IEEE Photon. Technol. Lett. 9, 764 (1997).
[CrossRef]

N. A. Whitaker, P. M. W. French, M. C. Gabriel, and H. Avramopoulos, IEEE Photon. Technol. Lett. 4, 260 (1992).
[CrossRef]

Opt. Lett. (2)

Other (1)

B.-E. Olsson and P. A. Andrekson, in Optical Fiber Comunication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper FA 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for testing the polarization-insensitive NOLM: EDFL, erbium-doped fiber laser; EDFA’s, erbium-doped fiber amplifiers; BPF’s, bandpass fibers; SPM, self-phase modulation; WDM’s, wavelength-division multiplexers; P.C., polarization controller.

Fig. 2
Fig. 2

(a) Polarization sensitivity versus fiber twist rate. A 0 twist rate corresponds to nontwisted fiber. (b) Non-linear transmission versus signal input polarization for nontwisted fiber and fiber twisted at a rate of 8  turns/m.

Fig. 3
Fig. 3

(a) Simulated nonlinear transmission for linearly birefringent (squares) and circularly birefringent (circles) fibers. (b) Shadow energy corresponding to the simulation in (a). The x axes in both (a) and (b) are signal launch polarizations. The signal polarization is parallel to control polarization at 0° and 180° but orthogonal to control polarization at 90°.

Tables (1)

Tables Icon

Table 1 Comparison of the Experimental Results of Nontwisted Fiber NOLM and Twisted Fiber (8  turns/m) NOLM

Metrics