Abstract

Blue 465-nm radiation is generated by frequency doubling of the output of an InGaAs diode-laser oscillator–amplifier system in critically phase-matched LiB3O5 (LBO). The diode-laser system emitted 4  W of single-frequency 930-nm radiation in a near-diffraction-limited beam M2<1.2. The laser power is enhanced to values of up to 150  W in a resonant external ring cavity. The LBO crystal is placed at a resonator internal focus. The frequency doubling in the LBO crystal generates blue radiation at 465  nm with a power of 1  W. The spectral width of the blue radiation is less than 3  MHz, and the value of the M2 beam parameter is less than 1.2.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, IEEE J. Sel. Topics Quantum Electron. 3, 435 (1997).
    [CrossRef]
  2. C. Zimmermann, V. Vuletic, A. Hemmerich, and T. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
    [CrossRef]
  3. B. Beier, D. Woll, M. Scheidt, K.-J. Boller, and R. Wallenstein, Appl. Phys. Lett. 71, 315 (1997).
    [CrossRef]
  4. D. Mehuys, L. Goldberg, and D. F. Welch, IEEE Photon. Technol. Lett. 5, 1179 (1993).
    [CrossRef]
  5. K. Liu and M. G. Littman, Opt. Lett. 6, 117 (1981).
    [CrossRef] [PubMed]
  6. T. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
    [CrossRef]

1997 (2)

B. Beier, D. Woll, M. Scheidt, K.-J. Boller, and R. Wallenstein, Appl. Phys. Lett. 71, 315 (1997).
[CrossRef]

S. Nakamura, IEEE J. Sel. Topics Quantum Electron. 3, 435 (1997).
[CrossRef]

1995 (1)

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

1993 (1)

D. Mehuys, L. Goldberg, and D. F. Welch, IEEE Photon. Technol. Lett. 5, 1179 (1993).
[CrossRef]

1981 (1)

1980 (1)

T. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Beier, B.

B. Beier, D. Woll, M. Scheidt, K.-J. Boller, and R. Wallenstein, Appl. Phys. Lett. 71, 315 (1997).
[CrossRef]

Boller, K.-J.

B. Beier, D. Woll, M. Scheidt, K.-J. Boller, and R. Wallenstein, Appl. Phys. Lett. 71, 315 (1997).
[CrossRef]

Couillaud, B.

T. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Goldberg, L.

D. Mehuys, L. Goldberg, and D. F. Welch, IEEE Photon. Technol. Lett. 5, 1179 (1993).
[CrossRef]

Hänsch, T.

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

T. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Hemmerich, A.

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

Littman, M. G.

Liu, K.

Mehuys, D.

D. Mehuys, L. Goldberg, and D. F. Welch, IEEE Photon. Technol. Lett. 5, 1179 (1993).
[CrossRef]

Nakamura, S.

S. Nakamura, IEEE J. Sel. Topics Quantum Electron. 3, 435 (1997).
[CrossRef]

Scheidt, M.

B. Beier, D. Woll, M. Scheidt, K.-J. Boller, and R. Wallenstein, Appl. Phys. Lett. 71, 315 (1997).
[CrossRef]

Vuletic, V.

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

Wallenstein, R.

B. Beier, D. Woll, M. Scheidt, K.-J. Boller, and R. Wallenstein, Appl. Phys. Lett. 71, 315 (1997).
[CrossRef]

Welch, D. F.

D. Mehuys, L. Goldberg, and D. F. Welch, IEEE Photon. Technol. Lett. 5, 1179 (1993).
[CrossRef]

Woll, D.

B. Beier, D. Woll, M. Scheidt, K.-J. Boller, and R. Wallenstein, Appl. Phys. Lett. 71, 315 (1997).
[CrossRef]

Zimmermann, C.

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

B. Beier, D. Woll, M. Scheidt, K.-J. Boller, and R. Wallenstein, Appl. Phys. Lett. 71, 315 (1997).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

S. Nakamura, IEEE J. Sel. Topics Quantum Electron. 3, 435 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Mehuys, L. Goldberg, and D. F. Welch, IEEE Photon. Technol. Lett. 5, 1179 (1993).
[CrossRef]

Opt. Commun. (1)

T. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the experimental setup of the diode-laser MOPA system and the external enhancement cavity with the nonlinear LBO crystal. PZT, piezo transducer; STAB., electronic stabilizer.

Fig. 2
Fig. 2

Output power of the tapered amplifier as a function of the optical input power. The amplifier is operated with a current of 8  A. The curves indicate calculated values of PAS [Eq.  (1)], PS [Eq.  (2)], and PT =PAS+PS.

Fig. 3
Fig. 3

Profile of the focused MOPA output in the plane parallel to the active area of the tapered amplifier. The focal length of the lens is 100  mm. The hyperbolic curves indicate the fit that determines the value of the calculated M2 beam parameter.

Fig. 4
Fig. 4

Power of the generated second harmonic at a wavelength of 465  nm depending on the laser power coupled into the cavity. The curve indicates values obtained by a numerical calculation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PAS=PASMexp-PO/PASS+PSE,
PS=PAMM1-exp-PO/PAMS+PO,

Metrics