Abstract

Raman imaging is shown to be a very suitable technique for simultaneous density mapping of different species in dry air and N2 supersonic nozzle flows. The salient features of Raman scattering are its molecular sensitivity and the fact that it can be spectrally separated from strong reflections and Mie scattering. We collected Raman images of both N2 and O2 concurrently by imaging the flow through an imaging spectrograph with a broad entrance slit onto a CCD camera. The main advantage of this method is that different species can be imaged under exactly the same flow conditions.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Miles and W. Lempert, Appl. Phys. B 51, 1 (1990).
    [CrossRef]
  2. J. A. Lock, R. G. Seasholtz, and W. T. John, Appl. Opt. 31, 2839 (1992).
    [CrossRef] [PubMed]
  3. N. J. Dam, M. Rodenburg, R. A. L. Tolboom, G. G. M. Stoffels, P. M. Huisman-Kleinherenbrink, and J. J. ter Meulen, Exp. Fluids 24, 93 (1998).
    [CrossRef]
  4. G. Laufer, R. L. McKenzie, and D. G. Fletcher, Appl. Opt. 29, 4873 (1990).
    [CrossRef] [PubMed]
  5. E. Gutmark, T. P. Parr, D. M. Hanson-Parr, and K. C. Schadow, Exp. Fluids 12, 10 (1991).
  6. R. B. Miles and W. R. Lempert, Annu. Rev. Fluid Mech. 29, 285 (1997).
    [CrossRef]
  7. J. P. Bonnet, D. Grésillon, and J. P. Taran, Annu. Rev. Fluid Mech. 30, 231 (1998).
    [CrossRef]
  8. G. Tejeda, B. Maté, J. M. Fernández-Sánchez, and S. Montero, Phys. Rev. Lett. 76, 34 (1996).
    [CrossRef] [PubMed]
  9. W. Reckers, L. Hüwel, G. Grünefeld, and P. Andresen, Appl. Opt. 32, 907 (1993).
    [CrossRef] [PubMed]
  10. B. H. Timmerman and D. W. Watt, Meas. Sci. Technol. 6, 1270 (1995).
    [CrossRef]
  11. R. L. McKenzie, Opt. Lett. 18, 995 (1993).
    [CrossRef] [PubMed]
  12. M. van Dyke, An Album of Fluid Motion (Parabolic, Stanford, Calif., 1982), p. 170.

1998 (2)

N. J. Dam, M. Rodenburg, R. A. L. Tolboom, G. G. M. Stoffels, P. M. Huisman-Kleinherenbrink, and J. J. ter Meulen, Exp. Fluids 24, 93 (1998).
[CrossRef]

J. P. Bonnet, D. Grésillon, and J. P. Taran, Annu. Rev. Fluid Mech. 30, 231 (1998).
[CrossRef]

1997 (1)

R. B. Miles and W. R. Lempert, Annu. Rev. Fluid Mech. 29, 285 (1997).
[CrossRef]

1996 (1)

G. Tejeda, B. Maté, J. M. Fernández-Sánchez, and S. Montero, Phys. Rev. Lett. 76, 34 (1996).
[CrossRef] [PubMed]

1995 (1)

B. H. Timmerman and D. W. Watt, Meas. Sci. Technol. 6, 1270 (1995).
[CrossRef]

1993 (2)

1992 (1)

1991 (1)

E. Gutmark, T. P. Parr, D. M. Hanson-Parr, and K. C. Schadow, Exp. Fluids 12, 10 (1991).

1990 (2)

Andresen, P.

Bonnet, J. P.

J. P. Bonnet, D. Grésillon, and J. P. Taran, Annu. Rev. Fluid Mech. 30, 231 (1998).
[CrossRef]

Dam, N. J.

N. J. Dam, M. Rodenburg, R. A. L. Tolboom, G. G. M. Stoffels, P. M. Huisman-Kleinherenbrink, and J. J. ter Meulen, Exp. Fluids 24, 93 (1998).
[CrossRef]

Fernández-Sánchez, J. M.

G. Tejeda, B. Maté, J. M. Fernández-Sánchez, and S. Montero, Phys. Rev. Lett. 76, 34 (1996).
[CrossRef] [PubMed]

Fletcher, D. G.

Grésillon, D.

J. P. Bonnet, D. Grésillon, and J. P. Taran, Annu. Rev. Fluid Mech. 30, 231 (1998).
[CrossRef]

Grünefeld, G.

Gutmark, E.

E. Gutmark, T. P. Parr, D. M. Hanson-Parr, and K. C. Schadow, Exp. Fluids 12, 10 (1991).

Hanson-Parr, D. M.

E. Gutmark, T. P. Parr, D. M. Hanson-Parr, and K. C. Schadow, Exp. Fluids 12, 10 (1991).

Huisman-Kleinherenbrink, P. M.

N. J. Dam, M. Rodenburg, R. A. L. Tolboom, G. G. M. Stoffels, P. M. Huisman-Kleinherenbrink, and J. J. ter Meulen, Exp. Fluids 24, 93 (1998).
[CrossRef]

Hüwel, L.

John, W. T.

Laufer, G.

Lempert, W.

R. Miles and W. Lempert, Appl. Phys. B 51, 1 (1990).
[CrossRef]

Lempert, W. R.

R. B. Miles and W. R. Lempert, Annu. Rev. Fluid Mech. 29, 285 (1997).
[CrossRef]

Lock, J. A.

Maté, B.

G. Tejeda, B. Maté, J. M. Fernández-Sánchez, and S. Montero, Phys. Rev. Lett. 76, 34 (1996).
[CrossRef] [PubMed]

McKenzie, R. L.

Miles, R.

R. Miles and W. Lempert, Appl. Phys. B 51, 1 (1990).
[CrossRef]

Miles, R. B.

R. B. Miles and W. R. Lempert, Annu. Rev. Fluid Mech. 29, 285 (1997).
[CrossRef]

Montero, S.

G. Tejeda, B. Maté, J. M. Fernández-Sánchez, and S. Montero, Phys. Rev. Lett. 76, 34 (1996).
[CrossRef] [PubMed]

Parr, T. P.

E. Gutmark, T. P. Parr, D. M. Hanson-Parr, and K. C. Schadow, Exp. Fluids 12, 10 (1991).

Reckers, W.

Rodenburg, M.

N. J. Dam, M. Rodenburg, R. A. L. Tolboom, G. G. M. Stoffels, P. M. Huisman-Kleinherenbrink, and J. J. ter Meulen, Exp. Fluids 24, 93 (1998).
[CrossRef]

Schadow, K. C.

E. Gutmark, T. P. Parr, D. M. Hanson-Parr, and K. C. Schadow, Exp. Fluids 12, 10 (1991).

Seasholtz, R. G.

Stoffels, G. G. M.

N. J. Dam, M. Rodenburg, R. A. L. Tolboom, G. G. M. Stoffels, P. M. Huisman-Kleinherenbrink, and J. J. ter Meulen, Exp. Fluids 24, 93 (1998).
[CrossRef]

Taran, J. P.

J. P. Bonnet, D. Grésillon, and J. P. Taran, Annu. Rev. Fluid Mech. 30, 231 (1998).
[CrossRef]

Tejeda, G.

G. Tejeda, B. Maté, J. M. Fernández-Sánchez, and S. Montero, Phys. Rev. Lett. 76, 34 (1996).
[CrossRef] [PubMed]

ter Meulen, J. J.

N. J. Dam, M. Rodenburg, R. A. L. Tolboom, G. G. M. Stoffels, P. M. Huisman-Kleinherenbrink, and J. J. ter Meulen, Exp. Fluids 24, 93 (1998).
[CrossRef]

Timmerman, B. H.

B. H. Timmerman and D. W. Watt, Meas. Sci. Technol. 6, 1270 (1995).
[CrossRef]

Tolboom, R. A. L.

N. J. Dam, M. Rodenburg, R. A. L. Tolboom, G. G. M. Stoffels, P. M. Huisman-Kleinherenbrink, and J. J. ter Meulen, Exp. Fluids 24, 93 (1998).
[CrossRef]

van Dyke, M.

M. van Dyke, An Album of Fluid Motion (Parabolic, Stanford, Calif., 1982), p. 170.

Watt, D. W.

B. H. Timmerman and D. W. Watt, Meas. Sci. Technol. 6, 1270 (1995).
[CrossRef]

Annu. Rev. Fluid Mech. (2)

R. B. Miles and W. R. Lempert, Annu. Rev. Fluid Mech. 29, 285 (1997).
[CrossRef]

J. P. Bonnet, D. Grésillon, and J. P. Taran, Annu. Rev. Fluid Mech. 30, 231 (1998).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

R. Miles and W. Lempert, Appl. Phys. B 51, 1 (1990).
[CrossRef]

Exp. Fluids (2)

E. Gutmark, T. P. Parr, D. M. Hanson-Parr, and K. C. Schadow, Exp. Fluids 12, 10 (1991).

N. J. Dam, M. Rodenburg, R. A. L. Tolboom, G. G. M. Stoffels, P. M. Huisman-Kleinherenbrink, and J. J. ter Meulen, Exp. Fluids 24, 93 (1998).
[CrossRef]

Meas. Sci. Technol. (1)

B. H. Timmerman and D. W. Watt, Meas. Sci. Technol. 6, 1270 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

G. Tejeda, B. Maté, J. M. Fernández-Sánchez, and S. Montero, Phys. Rev. Lett. 76, 34 (1996).
[CrossRef] [PubMed]

Other (1)

M. van Dyke, An Album of Fluid Motion (Parabolic, Stanford, Calif., 1982), p. 170.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Rayleigh and (b) Raman images of a supersonic nozzle flow of dry air into ambient air with a stagnation pressure of 3.0  bars. The three Raman images correspond to the Raman bands of O2 1556 cm-1, N2 2331 cm-1, and the first overtone of O2 3080 cm-1. Accumulations over (a) 25 and (b) 5700 laser pulses are shown.

Fig. 2
Fig. 2

(a) Rayleigh, (b) N2, and (c) O2 Raman images of a N2 flow into ambient air with a stagnation pressure of 7.0  bars. Accumulations over (a) 25 and (b), (c) 3600 laser pulses are shown.

Fig. 3
Fig. 3

(a) Rayleigh and (b) O2 Raman images of a dry air flow into ambient air with a stagnation pressure of 7.0  bars, containing a 3-mm cylinder. (c) N2 and (d) O2 Raman images of a N2 flow into ambient air with a stagnation pressure of 3.0  bars around a 3-mm cylinder are also shown. The images were accumulated over (a) 25, (b) 4500, and (c), (d) 6000 laser pulses.

Metrics