Abstract

Persistent holograms are recorded with red light in lithium niobate crystals doped with manganese and iron. Different erasure mechanisms are investigated, and a recording schedule for multiplexing holograms with equal diffraction efficiencies is proposed. To test the recording schedule experimentally, we multiplex 50 plane-wave holograms with the proposed recording schedule.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Buse, A. Adibi, and D. Psaltis, Nature (London) 393, 665 (1998).
    [CrossRef]
  2. D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
    [CrossRef]
  3. K. Buse, F. Jermann, and E. Krätzig, Ferroelectrics 141, 197 (1993).
    [CrossRef]
  4. H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, Opt. Lett. 1305, 1305 (1997).
    [CrossRef]
  5. D. Lande, S. S. Orlov, A. Akella, L. Hesselink, and R. R. Neurgaonkar, Opt. Lett. 22, 1722 (1997).
    [CrossRef]
  6. D. Psaltis, D. Brady, and K. Wagner, Appl. Opt. 27, 1752 (1988).
    [CrossRef]
  7. Y. Taketomi, J. E. Ford, H. Sasaki, Y. Fainman, and S. H. Lee, Opt. Lett. 16, 1774 (1991).
    [CrossRef] [PubMed]

1998

K. Buse, A. Adibi, and D. Psaltis, Nature (London) 393, 665 (1998).
[CrossRef]

1997

H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, Opt. Lett. 1305, 1305 (1997).
[CrossRef]

D. Lande, S. S. Orlov, A. Akella, L. Hesselink, and R. R. Neurgaonkar, Opt. Lett. 22, 1722 (1997).
[CrossRef]

1993

K. Buse, F. Jermann, and E. Krätzig, Ferroelectrics 141, 197 (1993).
[CrossRef]

1991

1988

1974

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Adibi, A.

K. Buse, A. Adibi, and D. Psaltis, Nature (London) 393, 665 (1998).
[CrossRef]

Akella, A.

Brady, D.

Buse, K.

K. Buse, A. Adibi, and D. Psaltis, Nature (London) 393, 665 (1998).
[CrossRef]

K. Buse, F. Jermann, and E. Krätzig, Ferroelectrics 141, 197 (1993).
[CrossRef]

Fainman, Y.

Ford, J. E.

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Guenther, H.

H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, Opt. Lett. 1305, 1305 (1997).
[CrossRef]

Hesselink, L.

Jermann, F.

K. Buse, F. Jermann, and E. Krätzig, Ferroelectrics 141, 197 (1993).
[CrossRef]

Krätzig, E.

K. Buse, F. Jermann, and E. Krätzig, Ferroelectrics 141, 197 (1993).
[CrossRef]

Lande, D.

Lee, S. H.

Macfarlane, R. M.

H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, Opt. Lett. 1305, 1305 (1997).
[CrossRef]

Neurgaonkar, R. R.

H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, Opt. Lett. 1305, 1305 (1997).
[CrossRef]

D. Lande, S. S. Orlov, A. Akella, L. Hesselink, and R. R. Neurgaonkar, Opt. Lett. 22, 1722 (1997).
[CrossRef]

Orlov, S. S.

Psaltis, D.

K. Buse, A. Adibi, and D. Psaltis, Nature (London) 393, 665 (1998).
[CrossRef]

D. Psaltis, D. Brady, and K. Wagner, Appl. Opt. 27, 1752 (1988).
[CrossRef]

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Sasaki, H.

Taketomi, Y.

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Wagner, K.

Wittmann, G.

H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, Opt. Lett. 1305, 1305 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. von der Linde, A. M. Glass, and K. F. Rodgers, Appl. Phys. Lett. 25, 155 (1974).
[CrossRef]

Ferroelectrics

K. Buse, F. Jermann, and E. Krätzig, Ferroelectrics 141, 197 (1993).
[CrossRef]

Nature (London)

K. Buse, A. Adibi, and D. Psaltis, Nature (London) 393, 665 (1998).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Recording and readout curve for a plane-wave hologram in a 0.85-mm-thick LiNbO3 crystal doped with 0.075-wt.  % Fe2O3 and 0.01-wt.  % MnO. The crystal was oxidized for 4  h at 1000 °C in an O2 atmosphere and then reduced for 1  h at 700 °C in an Ar atmosphere. The UV light is from a 100-W mercury lamp (wavelength, 404  nm, unpolarized; intensity 4 mW/cm2, homogeneous), and the two red beams are from a 35-mW He–Ne laser (wavelength, 633  nm, ordinary polarization; 1/e2 beam diameter, 2.0  mm; intensity of each beam, 300 mW/cm2). The angle between each beam and the normal to the crystal surface was 21°. The crystal was homogeneously pre-exposed to UV light for at least 1  h before the experiment. Then a plane-wave grating (transmission geometry; grating period, 0.9 μm) was recorded and reconstructed. The grating vector was aligned parallel to the c axis of the sample.

Fig. 2
Fig. 2

Diffraction efficiency η versus time for four cycles of recording and erasure with UV and red light in a LiNbO3:Fe:Mn crystal.

Fig. 3
Fig. 3

Normalized diffraction efficiency η versus time for different erasure mechanisms in two-center holographic recording.

Fig. 4
Fig. 4

Selectivity curve for a plane-wave hologram recorded in LiNbO3:Fe:Mn crystal.

Fig. 5
Fig. 5

Diffraction efficiency η versus angle for 50-angle-multiplexed holograms (a) at the end of recording (no readout) and (b) after 1-h readout (exposure by one red beam).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η=A01-exp-t/τr.
η=Aexp-t/τe1+Bexp-t/τe2.
M/#=βA0τe2/τr,
tn=τe2n+R-1,
Aen+1=αA01-exp-t0/τr+Aenexp-Mt0/τe1,
Anen+1=βA01-exp-t0/τr+Anenexp-Mt0/τe2,

Metrics