Abstract

We report the initial results of a large-scale evaluation of production-grade fused silica and calcium fluoride to be used in 193-nm lithographic applications. The samples have been provided by many different suppliers of materials. A marathon irradiation chamber permits simultaneous exposure of as many as 36 samples at 800  Hz, at fluences from 0.2 to 4 (mJ/cm2)/pulse and pulse counts in excess of 109. The initial absorption and the laser-induced absorption are found to vary over a wide range. The compaction of each fused-silica sample follows a power law, but its parameters can differ widely from sample to sample.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Rothschild and J. H. C. Sedlacek, Proc. SPIE 1848, 537 (1992).
    [CrossRef]
  2. C. Smith, N. F. Borrelli, D. C. Allan, and T. P. Seward, Proc. SPIE 3051, 116 (1997).
    [CrossRef]
  3. M. Rothschild, D. J. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
    [CrossRef]
  4. D. L. Griscom, Proc. SPIE 541, 38 (1985).
    [CrossRef]
  5. A. G. Revesz, IEEE Trans. Nucl. Sci. NS-18, 113 (1971).
    [CrossRef]
  6. W. Primak and R. Kampwirth, J. Appl. Phys. 39, 5651 (1968).
    [CrossRef]
  7. R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, Proc. SPIE 2440, 118 (1995).
    [CrossRef]
  8. N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward, J. Opt. Soc. Am. B 14, 1606 (1996).
    [CrossRef]
  9. D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward, Opt. Lett. 21, 1960 (1996).
    [CrossRef] [PubMed]
  10. R. E. Schenker and W. G. Oldham, J. Appl. Phys. 82, 1065 (1997).
    [CrossRef]
  11. T. P. Dufey, T. Embree, T. Ishihara, R. Morton, W. N. Partlo, T. Watson, and R. Sandstrom, Proc. SPIE 3334, 1014 (1998).
    [CrossRef]
  12. D. J. Krajnovich, I. K. Pour, A. C. Tam, W. P. Leung, and M. V. Kulkarni, Opt. Lett. 18, 453 (1993).
    [CrossRef] [PubMed]
  13. R. J. Araujo, N. F. Borrelli, and C. Smith, Proc. SPIE 3424, 2 (1998).
    [CrossRef]

1998 (2)

T. P. Dufey, T. Embree, T. Ishihara, R. Morton, W. N. Partlo, T. Watson, and R. Sandstrom, Proc. SPIE 3334, 1014 (1998).
[CrossRef]

R. J. Araujo, N. F. Borrelli, and C. Smith, Proc. SPIE 3424, 2 (1998).
[CrossRef]

1997 (2)

C. Smith, N. F. Borrelli, D. C. Allan, and T. P. Seward, Proc. SPIE 3051, 116 (1997).
[CrossRef]

R. E. Schenker and W. G. Oldham, J. Appl. Phys. 82, 1065 (1997).
[CrossRef]

1996 (2)

1995 (1)

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, Proc. SPIE 2440, 118 (1995).
[CrossRef]

1993 (1)

1992 (1)

M. Rothschild and J. H. C. Sedlacek, Proc. SPIE 1848, 537 (1992).
[CrossRef]

1989 (1)

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

1985 (1)

D. L. Griscom, Proc. SPIE 541, 38 (1985).
[CrossRef]

1971 (1)

A. G. Revesz, IEEE Trans. Nucl. Sci. NS-18, 113 (1971).
[CrossRef]

1968 (1)

W. Primak and R. Kampwirth, J. Appl. Phys. 39, 5651 (1968).
[CrossRef]

Allan, D. C.

Araujo, R. J.

R. J. Araujo, N. F. Borrelli, and C. Smith, Proc. SPIE 3424, 2 (1998).
[CrossRef]

Borrelli, N. F.

R. J. Araujo, N. F. Borrelli, and C. Smith, Proc. SPIE 3424, 2 (1998).
[CrossRef]

C. Smith, N. F. Borrelli, D. C. Allan, and T. P. Seward, Proc. SPIE 3051, 116 (1997).
[CrossRef]

D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward, Opt. Lett. 21, 1960 (1996).
[CrossRef] [PubMed]

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward, J. Opt. Soc. Am. B 14, 1606 (1996).
[CrossRef]

Dufey, T. P.

T. P. Dufey, T. Embree, T. Ishihara, R. Morton, W. N. Partlo, T. Watson, and R. Sandstrom, Proc. SPIE 3334, 1014 (1998).
[CrossRef]

Ehrlich, D. J.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

Eichner, L.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, Proc. SPIE 2440, 118 (1995).
[CrossRef]

Embree, T.

T. P. Dufey, T. Embree, T. Ishihara, R. Morton, W. N. Partlo, T. Watson, and R. Sandstrom, Proc. SPIE 3334, 1014 (1998).
[CrossRef]

Griscom, D. L.

D. L. Griscom, Proc. SPIE 541, 38 (1985).
[CrossRef]

Ishihara, T.

T. P. Dufey, T. Embree, T. Ishihara, R. Morton, W. N. Partlo, T. Watson, and R. Sandstrom, Proc. SPIE 3334, 1014 (1998).
[CrossRef]

Kampwirth, R.

W. Primak and R. Kampwirth, J. Appl. Phys. 39, 5651 (1968).
[CrossRef]

Krajnovich, D. J.

Kulkarni, M. V.

Leung, W. P.

Morton, R.

T. P. Dufey, T. Embree, T. Ishihara, R. Morton, W. N. Partlo, T. Watson, and R. Sandstrom, Proc. SPIE 3334, 1014 (1998).
[CrossRef]

Oldham, W. G.

R. E. Schenker and W. G. Oldham, J. Appl. Phys. 82, 1065 (1997).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, Proc. SPIE 2440, 118 (1995).
[CrossRef]

Partlo, W. N.

T. P. Dufey, T. Embree, T. Ishihara, R. Morton, W. N. Partlo, T. Watson, and R. Sandstrom, Proc. SPIE 3334, 1014 (1998).
[CrossRef]

Pour, I. K.

Primak, W.

W. Primak and R. Kampwirth, J. Appl. Phys. 39, 5651 (1968).
[CrossRef]

Revesz, A. G.

A. G. Revesz, IEEE Trans. Nucl. Sci. NS-18, 113 (1971).
[CrossRef]

Rothschild, M.

M. Rothschild and J. H. C. Sedlacek, Proc. SPIE 1848, 537 (1992).
[CrossRef]

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

Sandstrom, R.

T. P. Dufey, T. Embree, T. Ishihara, R. Morton, W. N. Partlo, T. Watson, and R. Sandstrom, Proc. SPIE 3334, 1014 (1998).
[CrossRef]

Schenker, R.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, Proc. SPIE 2440, 118 (1995).
[CrossRef]

Schenker, R. E.

R. E. Schenker and W. G. Oldham, J. Appl. Phys. 82, 1065 (1997).
[CrossRef]

Sedlacek, J. H. C.

M. Rothschild and J. H. C. Sedlacek, Proc. SPIE 1848, 537 (1992).
[CrossRef]

Seward, T. P.

Shaver, D. C.

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

Smith, C.

R. J. Araujo, N. F. Borrelli, and C. Smith, Proc. SPIE 3424, 2 (1998).
[CrossRef]

C. Smith, N. F. Borrelli, D. C. Allan, and T. P. Seward, Proc. SPIE 3051, 116 (1997).
[CrossRef]

D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward, Opt. Lett. 21, 1960 (1996).
[CrossRef] [PubMed]

N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward, J. Opt. Soc. Am. B 14, 1606 (1996).
[CrossRef]

Tam, A. C.

Vaidya, H.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, Proc. SPIE 2440, 118 (1995).
[CrossRef]

Vaidya, S.

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, Proc. SPIE 2440, 118 (1995).
[CrossRef]

Watson, T.

T. P. Dufey, T. Embree, T. Ishihara, R. Morton, W. N. Partlo, T. Watson, and R. Sandstrom, Proc. SPIE 3334, 1014 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

M. Rothschild, D. J. Ehrlich, and D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

A. G. Revesz, IEEE Trans. Nucl. Sci. NS-18, 113 (1971).
[CrossRef]

J. Appl. Phys. (2)

W. Primak and R. Kampwirth, J. Appl. Phys. 39, 5651 (1968).
[CrossRef]

R. E. Schenker and W. G. Oldham, J. Appl. Phys. 82, 1065 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Proc. SPIE (6)

T. P. Dufey, T. Embree, T. Ishihara, R. Morton, W. N. Partlo, T. Watson, and R. Sandstrom, Proc. SPIE 3334, 1014 (1998).
[CrossRef]

R. J. Araujo, N. F. Borrelli, and C. Smith, Proc. SPIE 3424, 2 (1998).
[CrossRef]

R. Schenker, L. Eichner, H. Vaidya, S. Vaidya, and W. G. Oldham, Proc. SPIE 2440, 118 (1995).
[CrossRef]

D. L. Griscom, Proc. SPIE 541, 38 (1985).
[CrossRef]

M. Rothschild and J. H. C. Sedlacek, Proc. SPIE 1848, 537 (1992).
[CrossRef]

C. Smith, N. F. Borrelli, D. C. Allan, and T. P. Seward, Proc. SPIE 3051, 116 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Representative trends of the absorption coefficients of the SiO2 samples as a function of laser pulses. Nominal fluence is 1 (mJ/cm2)/pulse.

Fig. 2
Fig. 2

Added and initial absorption coefficients (in inverse centimeters, base 10) for a representative population of SiO2 and CaF2 samples. Nominal fluence is 1 (mJ/cm2)/pulse. Categories on the x axis refer to the final pulse count on the respective samples.

Fig. 3
Fig. 3

Summary of unconstrained densification [in parts in 106 (ppm)] as a function of two-photon dose for SiO2 samples. The vertical dashed line refers to an approximate lifetime dose of 25. Also shown are two series of data points (open symbols) corresponding to two separate samples and the least-squares fit to Eq.  (2) (solid lines). (See text for details.)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Tint=10-2β+(α+γ)l,
δ=k(D)x,
D(N)=0NI2(N)τ(N)dN,

Metrics