Abstract

We present what we believe to be the first implementation of a Fabry–Perot (FP) etalon using polymer cholesteric liquid-crystal mirrors. These polymer mirrors have each been fabricated onto a single substrate, which allows the FP cavity spacing to be only a few micrometers wide. For the experimental results presented, cavity lengths of 13.8 and 7.6 μm yield near-infrared free spectral ranges of 24.8 and 45.6  nm, respectively. The measured finesse of 14.31 is approaching the limitation imposed by the reflectivity of the mirrors.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Reinitzer, Monatsh. Chem. 9, 421 (1888).
    [CrossRef]
  2. J. L. Ferguson, Mol. Cryst. 1, 293 (1966).
    [CrossRef]
  3. V. A. Belyakov, Diffraction Optics of Complex-Structured Periodic Media (Springer-Verlag, Berlin, 1992), pp. 11–20.
  4. S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, and K. J. Skerrett, J. Opt. Soc. Am. B 5, 1962 (1988).
    [CrossRef]
  5. F. H. Kreuzer and M. E. Gawhary, “Compositions containing liquid crystalline phases,” U.S. patent4,410,570 (October18, 1983).
  6. F. Mosini and N. V. Tabiryan, Proc. SPIE 1988, 28 (1993).
    [CrossRef]
  7. G. D. Sharp, J. E. Stockley, and K. M. Johnson, “Liquid crystal phase modulator using cholesteric circular polarizers,” U.S. patent5,627,666 (May6, 1997).
  8. M. Tur, Mol. Cryst. Liq. Cryst. 29, 345 (1975).
    [CrossRef]
  9. D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972).
    [CrossRef]
  10. J. S. Patel and S. Lee, Appl. Phys. Lett. 58, 2441 (1991).
    [CrossRef]

1993

F. Mosini and N. V. Tabiryan, Proc. SPIE 1988, 28 (1993).
[CrossRef]

1991

J. S. Patel and S. Lee, Appl. Phys. Lett. 58, 2441 (1991).
[CrossRef]

1988

1975

M. Tur, Mol. Cryst. Liq. Cryst. 29, 345 (1975).
[CrossRef]

1972

1966

J. L. Ferguson, Mol. Cryst. 1, 293 (1966).
[CrossRef]

1888

F. Reinitzer, Monatsh. Chem. 9, 421 (1888).
[CrossRef]

Belyakov, V. A.

V. A. Belyakov, Diffraction Optics of Complex-Structured Periodic Media (Springer-Verlag, Berlin, 1992), pp. 11–20.

Berreman, D. W.

Cerqua, K. A.

Ferguson, J. L.

J. L. Ferguson, Mol. Cryst. 1, 293 (1966).
[CrossRef]

Gawhary, M. E.

F. H. Kreuzer and M. E. Gawhary, “Compositions containing liquid crystalline phases,” U.S. patent4,410,570 (October18, 1983).

Guardalben, M. J.

Jacobs, S. D.

Johnson, K. M.

G. D. Sharp, J. E. Stockley, and K. M. Johnson, “Liquid crystal phase modulator using cholesteric circular polarizers,” U.S. patent5,627,666 (May6, 1997).

Kreuzer, F. H.

F. H. Kreuzer and M. E. Gawhary, “Compositions containing liquid crystalline phases,” U.S. patent4,410,570 (October18, 1983).

Lee, S.

J. S. Patel and S. Lee, Appl. Phys. Lett. 58, 2441 (1991).
[CrossRef]

Marshall, K. L.

Mosini, F.

F. Mosini and N. V. Tabiryan, Proc. SPIE 1988, 28 (1993).
[CrossRef]

Patel, J. S.

J. S. Patel and S. Lee, Appl. Phys. Lett. 58, 2441 (1991).
[CrossRef]

Reinitzer, F.

F. Reinitzer, Monatsh. Chem. 9, 421 (1888).
[CrossRef]

Schmid, A.

Sharp, G. D.

G. D. Sharp, J. E. Stockley, and K. M. Johnson, “Liquid crystal phase modulator using cholesteric circular polarizers,” U.S. patent5,627,666 (May6, 1997).

Skerrett, K. J.

Stockley, J. E.

G. D. Sharp, J. E. Stockley, and K. M. Johnson, “Liquid crystal phase modulator using cholesteric circular polarizers,” U.S. patent5,627,666 (May6, 1997).

Tabiryan, N. V.

F. Mosini and N. V. Tabiryan, Proc. SPIE 1988, 28 (1993).
[CrossRef]

Tur, M.

M. Tur, Mol. Cryst. Liq. Cryst. 29, 345 (1975).
[CrossRef]

Appl. Phys. Lett.

J. S. Patel and S. Lee, Appl. Phys. Lett. 58, 2441 (1991).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Mol. Cryst.

J. L. Ferguson, Mol. Cryst. 1, 293 (1966).
[CrossRef]

Mol. Cryst. Liq. Cryst.

M. Tur, Mol. Cryst. Liq. Cryst. 29, 345 (1975).
[CrossRef]

Monatsh. Chem.

F. Reinitzer, Monatsh. Chem. 9, 421 (1888).
[CrossRef]

Proc. SPIE

F. Mosini and N. V. Tabiryan, Proc. SPIE 1988, 28 (1993).
[CrossRef]

Other

G. D. Sharp, J. E. Stockley, and K. M. Johnson, “Liquid crystal phase modulator using cholesteric circular polarizers,” U.S. patent5,627,666 (May6, 1997).

V. A. Belyakov, Diffraction Optics of Complex-Structured Periodic Media (Springer-Verlag, Berlin, 1992), pp. 11–20.

F. H. Kreuzer and M. E. Gawhary, “Compositions containing liquid crystalline phases,” U.S. patent4,410,570 (October18, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic detailing the construction of the PCLC etalon.

Fig. 2
Fig. 2

Normalized experimental transmission spectrum for left-hand circularly polarized light (top) and right-hand cicularly polarized light (bottom) incident on the passive etalon with PCLC mirrors. Note the relatively featureless transmission of the right-hand circularly polarized light.

Fig. 3
Fig. 3

Normalized transmission spectrum predicted by 4×4 matrix theory for the experimental conditions of Fig.  2: top, left-hand polarized light incident and bottom, right-hand polarized light incident.

Fig. 4
Fig. 4

Normalized experimental transmission spectrum showing improved finesse and contrast ratio for the passive PCLC etalon.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ0n¯=p.
λ0neλλ0no
F=πR01/21-R0

Metrics