Abstract

We study the quantum-noise properties of spectrally filtered solitons in optical fibers. Perturbation theory, including a quantum description of the continuum, is used to derive a complete analytical expression for the second-order correlator of the amplitude quadrature. This correlator is subsequently used to optimize the frequency response of the filter numerically in order to achieve the minimum photon-number noise. For propagation distances up to three soliton periods, the length at which the best noise reduction occurs, a square filter is found to be approximately optimum. For longer distances, more-complicated filter shapes are predicted for the best noise reduction.

© 1999 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Soliton squeezing in a highly transmissive nonlinear optical loop mirror

Dmitry Levandovsky, Michael Vasilyev, and Prem Kumar
Opt. Lett. 24(2) 89-91 (1999)

Linearized quantum-fluctuation theory of spectrally filtered optical solitons

Antonio Mecozzi and Prem Kumar
Opt. Lett. 22(16) 1232-1234 (1997)

Study of the continuum generated by in-line filtering of solitons

Thierry Georges and Mireille Borg
Opt. Lett. 22(5) 265-267 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription