Abstract

Dispersion compensation for a photorefractive self-pumped phase conjugator with femtosecond pulses is analyzed. The self-pumped phase conjugator consists of a pair of dynamic gratings coupled by total internal reflections at the crystal surfaces (cat conjugator). The negative angular dispersions of refraction at the air–crystal interface and the gratings inside the crystal compensate for the positive dispersion of the finite crystal path. The experimental results show that with partial dispersion compensation the width of the self-pumped phase conjugation at 450  nm of femtosecond pulses is narrower than that of the transmitted pulses.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-F. Yau, P.-J. Wang, E.-Y. Pan, J. Chen, and J. Y. Chang, Opt. Commun. 135, 331 (1997).
    [CrossRef]
  2. H.-F. Yau, P.-J. Wang, E.-Y. Pan, and J. Chen, Opt. Lett. 21, 1168 (1996).
    [CrossRef] [PubMed]
  3. A. Yariv, D. Fekete, and D. M. Pepper, Opt. Lett. 4, 52 (1979).
    [CrossRef]
  4. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chaps. 2 and 3.
  6. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena:?Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1995), Chap. 2.
  7. R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Quantum Electron. 33, 2150 (1997).
    [CrossRef]
  8. K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, Phys. Status Solidi A 135, K87 (1993).
    [CrossRef]
  9. B. H. Kolner and M. Nazarathy, Opt. Lett. 14, 630 (1989).
    [CrossRef] [PubMed]

1997 (2)

H.-F. Yau, P.-J. Wang, E.-Y. Pan, J. Chen, and J. Y. Chang, Opt. Commun. 135, 331 (1997).
[CrossRef]

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

1996 (1)

1993 (1)

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

1989 (1)

1982 (1)

1979 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chaps. 2 and 3.

Brubaker, R. M.

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

Buse, K.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Chang, J. Y.

H.-F. Yau, P.-J. Wang, E.-Y. Pan, J. Chen, and J. Y. Chang, Opt. Commun. 135, 331 (1997).
[CrossRef]

Chen, J.

H.-F. Yau, P.-J. Wang, E.-Y. Pan, J. Chen, and J. Y. Chang, Opt. Commun. 135, 331 (1997).
[CrossRef]

H.-F. Yau, P.-J. Wang, E.-Y. Pan, and J. Chen, Opt. Lett. 21, 1168 (1996).
[CrossRef] [PubMed]

Diels, J.-C.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena:?Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1995), Chap. 2.

Ding, Y.

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

Feinberg, J.

Fekete, D.

Hesse, H.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Kolner, B. H.

Kratzig, E.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Loheide, S.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Melloch, M. R.

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

Mersch, F.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Nazarathy, M.

Nolte, D. D.

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

Pan, E.-Y.

H.-F. Yau, P.-J. Wang, E.-Y. Pan, J. Chen, and J. Y. Chang, Opt. Commun. 135, 331 (1997).
[CrossRef]

H.-F. Yau, P.-J. Wang, E.-Y. Pan, and J. Chen, Opt. Lett. 21, 1168 (1996).
[CrossRef] [PubMed]

Pepper, D. M.

Riehemann, S.

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Rudolph, W.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena:?Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1995), Chap. 2.

Wang, P.-J.

H.-F. Yau, P.-J. Wang, E.-Y. Pan, J. Chen, and J. Y. Chang, Opt. Commun. 135, 331 (1997).
[CrossRef]

H.-F. Yau, P.-J. Wang, E.-Y. Pan, and J. Chen, Opt. Lett. 21, 1168 (1996).
[CrossRef] [PubMed]

Weiner, A. M.

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

Yariv, A.

Yau, H.-F.

H.-F. Yau, P.-J. Wang, E.-Y. Pan, J. Chen, and J. Y. Chang, Opt. Commun. 135, 331 (1997).
[CrossRef]

H.-F. Yau, P.-J. Wang, E.-Y. Pan, and J. Chen, Opt. Lett. 21, 1168 (1996).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Quantum Electron. 33, 2150 (1997).
[CrossRef]

Opt. Commun. (1)

H.-F. Yau, P.-J. Wang, E.-Y. Pan, J. Chen, and J. Y. Chang, Opt. Commun. 135, 331 (1997).
[CrossRef]

Opt. Lett. (4)

Phys. Status Solidi A (1)

K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, Phys. Status Solidi A 135, K87 (1993).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chaps. 2 and 3.

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena:?Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1995), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical path loop inside the self-pumped phase conjugator. Two transmission gratings, in regions  A and E, are formed by the center frequency components ωl of the incident pulse. P is the observation plane, θ and α are the angles of incidence and refraction, respectively, and Θ and γ are the angles between the fanning beam and the refraction beam and the normal of the crystal surface. OA=ll, ABDE=l2, EA=l3, OP=l4.

Fig. 2
Fig. 2

Second derivative of the dispersion as a function of wavelength. Solid curve, dispersion with angular dispersion not considered. For the other curves, for the total dispersion including the angular dispersions, the transmission grating spacings Λ are shown.

Fig. 3
Fig. 3

Pulse width as a function of wavelength. Solid curve, width of the transmitted pulse with angular dispersions not considered. For the other curves, which represent the widths of the self-pumped phase-conjugate pulses, the transmission grating spacings Λ are shown.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

bn=1n!dnΨdΩn|ωl
dαdλ=-sinθnn2-sin2θ1/2dndλ
dΘdλ=12nΛ2-λ21/21-λndndλ
ΦB=2 tan-1nn2 sin2γ-11/2cosγ
dθdλ=sinθncosθdndλ
d2Ψ1dΩ2=-l1ωlcdαdΩ2-l2ωlcdΘdΩ2-l1+l3ωlcdΘdΩ2-l4ωlcdθdΩ2+d2ΦBdΩ2+d2ΦDdΩ2
d2ΦidΩ2=-tanΦi2dΦidΩ2+n3λ22πctan2γitan2Φi×λ22πcdndλ+43n2 sin2γi-1×dndλdΦidΩi=B,D-λ2πcdΦidΩλd2ndλ2+2dndλ/dn/dλ,
γi=γi=B90°-γi=D
d2Ψ1dΩ2=-4λ32πc2l1 sin2θn2(n2-sin2θ)dndλ2+l1+l2+l32Λn2-λ21-λndndλ2+l4 sin2θn2 cos2θdndλ2+d2ΦBdΩ2+d2ΦDdΩ2
d2Ψ2dλ2=d2dΩ2ΩcnL=λ32πc2Ld2ndλ2
d2ΨdΩ2=d2Ψ1dΩ2+d2Ψ2dΩ2
EoutΩ=RΩexp-iΨΩEΩ,
Eoutt,L=A1exp(-1-ib2τG0/22×t+b1τG0[1+b22/τG0/24]1/22)
τGL=τG0[1+b22/τG0/24]1/2
d2Ψ1dΩ2=-4λ32πc2l1+l3sin2θn2(n2-sin2θ)dndλ2+l1+l22Λn2-λ21-λndndλ2+l4 sin2θn2 cos2θdndλ2+d2ΦBdΩ2+d2ΦDdΩ2

Metrics