Abstract

Dynamic holograms are created and studied in a D2 azo-dye-doped nematic liquid crystal. The dependence of diffraction on the excitation and probe polarizations is observed. The efficiency of excitation and the corresponding relaxation time depend also on the period and orientation of the light-interference pattern with respect to the initial molecular orientation. The excitation and diffusion of dye molecules are suggested to be the origin of these phenomena.

© 1998 Optical Society of America

Full Article  |  PDF Article

Corrections

B. Saad, M. M. Denariez-Roberge, and T. V. Galstyan, "Diffusion of photoexcited azo dye in a liquid-crystal host: errata," Opt. Lett. 23, 1942-1942 (1998)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-23-24-1942

References

  • View by:
  • |
  • |
  • |

  1. I. Janóssy and T. Kósa, Opt. Lett. 17, 1183 (1992); Opt. Lett. 20, 1230 (1995).
    [CrossRef]
  2. M. I. Barnik, A. S. Zolot’ko, V. G. Rumyantseva, and D. B. Terskov, Crystallogr. Rep. 40, 691 (1995).
  3. H. Li, Yu Liang, and I. C. Khoo, Mol. Cryst. Liq. Cryst. 251, 85 (1994); IEEE J. Quantum Electron. 29, 1444 (1993).
    [CrossRef]
  4. T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, J. Chem. Phys. 107, 9319 (1997).
    [CrossRef]
  5. A. G. Chen and D. J. Brady, Opt. Lett. 17, 441 (1992).
    [CrossRef] [PubMed]
  6. S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khijnyak, Sov. Phys. JETP 55, 854 (1982).
  7. I. C. Khoo, Liquid Crystals:?Physical Properties and Nonlinear Optical Phenomena (Wiley Interscience, New York, 1995); N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
    [CrossRef]
  8. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
    [CrossRef]

1997 (1)

T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, J. Chem. Phys. 107, 9319 (1997).
[CrossRef]

1995 (1)

M. I. Barnik, A. S. Zolot’ko, V. G. Rumyantseva, and D. B. Terskov, Crystallogr. Rep. 40, 691 (1995).

1994 (2)

H. Li, Yu Liang, and I. C. Khoo, Mol. Cryst. Liq. Cryst. 251, 85 (1994); IEEE J. Quantum Electron. 29, 1444 (1993).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

1992 (2)

1982 (1)

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khijnyak, Sov. Phys. JETP 55, 854 (1982).

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Barnik, M. I.

M. I. Barnik, A. S. Zolot’ko, V. G. Rumyantseva, and D. B. Terskov, Crystallogr. Rep. 40, 691 (1995).

Brady, D. J.

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Chen, A. G.

Denariez-Roberge, M. M.

T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, J. Chem. Phys. 107, 9319 (1997).
[CrossRef]

Galstyan, T. V.

T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, J. Chem. Phys. 107, 9319 (1997).
[CrossRef]

Janóssy, I.

Khijnyak, A. I.

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khijnyak, Sov. Phys. JETP 55, 854 (1982).

Khoo, I. C.

H. Li, Yu Liang, and I. C. Khoo, Mol. Cryst. Liq. Cryst. 251, 85 (1994); IEEE J. Quantum Electron. 29, 1444 (1993).
[CrossRef]

I. C. Khoo, Liquid Crystals:?Physical Properties and Nonlinear Optical Phenomena (Wiley Interscience, New York, 1995); N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Kósa, T.

Li, H.

H. Li, Yu Liang, and I. C. Khoo, Mol. Cryst. Liq. Cryst. 251, 85 (1994); IEEE J. Quantum Electron. 29, 1444 (1993).
[CrossRef]

Liang, Yu

H. Li, Yu Liang, and I. C. Khoo, Mol. Cryst. Liq. Cryst. 251, 85 (1994); IEEE J. Quantum Electron. 29, 1444 (1993).
[CrossRef]

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Odulov, S. G.

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khijnyak, Sov. Phys. JETP 55, 854 (1982).

Reznikov, Yu. A.

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khijnyak, Sov. Phys. JETP 55, 854 (1982).

Rumyantseva, V. G.

M. I. Barnik, A. S. Zolot’ko, V. G. Rumyantseva, and D. B. Terskov, Crystallogr. Rep. 40, 691 (1995).

Saad, B.

T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, J. Chem. Phys. 107, 9319 (1997).
[CrossRef]

Soskin, M. S.

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khijnyak, Sov. Phys. JETP 55, 854 (1982).

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Terskov, D. B.

M. I. Barnik, A. S. Zolot’ko, V. G. Rumyantseva, and D. B. Terskov, Crystallogr. Rep. 40, 691 (1995).

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Zolot’ko, A. S.

M. I. Barnik, A. S. Zolot’ko, V. G. Rumyantseva, and D. B. Terskov, Crystallogr. Rep. 40, 691 (1995).

Appl. Phys. Lett. (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, Appl. Phys. Lett. 64, 1074 (1994).
[CrossRef]

Crystallogr. Rep. (1)

M. I. Barnik, A. S. Zolot’ko, V. G. Rumyantseva, and D. B. Terskov, Crystallogr. Rep. 40, 691 (1995).

J. Chem. Phys. (1)

T. V. Galstyan, B. Saad, and M. M. Denariez-Roberge, J. Chem. Phys. 107, 9319 (1997).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

H. Li, Yu Liang, and I. C. Khoo, Mol. Cryst. Liq. Cryst. 251, 85 (1994); IEEE J. Quantum Electron. 29, 1444 (1993).
[CrossRef]

Opt. Lett. (2)

Sov. Phys. JETP (1)

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khijnyak, Sov. Phys. JETP 55, 854 (1982).

Other (1)

I. C. Khoo, Liquid Crystals:?Physical Properties and Nonlinear Optical Phenomena (Wiley Interscience, New York, 1995); N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption spectra of the planar NLC cell doped with dichroic azo dye D2. DΠ and D are the optical densities of the oriented guest–host system, measured, respectively, by light polarizations parallel and perpendicular to the director of the NLC. Inset, interaction geometry. The nonperturbed director nˆ may be parallel to the x or the y axis (denoted nv and nh, respectively). Cell substrates are in the x, y plane. θ is the cross-section angle of the two excitation beams 1 and 2. Probe beam 3 propagates parallel to the z axis.

Fig. 2
Fig. 2

Polarization and temporal behavior of the diffraction. The excitation is switched on at t=0.04 s and switched off after t=3.04 s. The director nˆ is parallel to the x axis. The first letter after the curve number represents the readout beam’s polarization, and the second letter represents the excitation beam’s polarization.

Fig. 3
Fig. 3

Typical behavior of probe beam diffraction versus total excitation intensity. Open circles and filled triangles correspond to nv and nh orientations, respectively. All polarizations (excitation and probe) are parallel to the director for each measurement. Solid curves are drawn as a guide to the eye only.

Fig. 4
Fig. 4

Characteristic relaxation time of diffraction for different excitation spatial periods Λ. The filled triangles and open circles represent the data for horizontal and vertical directors, respectively. The solid curves represent theoretical fits corresponding to the diffusion mechanism.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N/t=kαI/(hν)-N/T+dy2N/y2,
Ny=kαI0T1+m cosqy/1dyTq2/(hν).
τd2/dyq2+T-1,

Metrics