Abstract

Period doubling of an 84-MHz repetition-rate Kerr-lens mode-locked Ti:sapphire laser operated at 830  nm and producing 300 mW of average power has been observed and explained in terms of total mode locking of TEM00 and TEM01 modes in an effective confocal cavity. This configuration leads to a spatial sweeping action of a single-peaked pulse at 42  MHz. Period tripling and quadrupling is observed for certain cavity configurations.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991).
    [Crossref] [PubMed]
  2. See P. F. Barbara, J. G. Fujimoto, W. H. Knox, and W. Zinth, eds., Ultrafast Phenomena X, Vol.??X of Proceedings of the Ultrafast Phenomena Conferences (Springer-Verlag, New York, 1996).
    [Crossref]
  3. J.-F. Cormier, M. Piché, and F. Salin, Opt. Lett. 19, 1225 (1994).
    [Crossref] [PubMed]
  4. Q. Xing, W. Zhang, and K. M. Yoo, Opt. Commun. 119, 113 (1995).
    [Crossref]
  5. C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, Opt. Commun. 137, 89 (1997).
    [Crossref]
  6. F. Salin, J. Squier, and M. Piché, Opt. Lett. 16, 1674 (1991); M. Piché and F. Salin, Opt. Lett. 18, 1041 (1993).
    [Crossref] [PubMed]
  7. D. H. Auston, IEEE J. Quantum Electron. 4, 420 (1968).
    [Crossref]
  8. P. W. Smith, Proc. IEEE 58, 1342 (1970).
    [Crossref]
  9. A. C. Maciel, P. Maly, and J. F. Ryan, Phys. Rev. A 39, 5455 (1989), and references therein.
    [Crossref] [PubMed]
  10. G. Sucha, S. R. Bolton, S. Weiss, and D. S. Chemla, Opt. Lett. 20, 1794 (1995).
    [Crossref]
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap.??21, p. 836.
  12. Ref.??11, Chap.??11, p. 657.

1997 (1)

C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, Opt. Commun. 137, 89 (1997).
[Crossref]

1995 (2)

1994 (1)

1991 (2)

1989 (1)

A. C. Maciel, P. Maly, and J. F. Ryan, Phys. Rev. A 39, 5455 (1989), and references therein.
[Crossref] [PubMed]

1970 (1)

P. W. Smith, Proc. IEEE 58, 1342 (1970).
[Crossref]

1968 (1)

D. H. Auston, IEEE J. Quantum Electron. 4, 420 (1968).
[Crossref]

Auston, D. H.

D. H. Auston, IEEE J. Quantum Electron. 4, 420 (1968).
[Crossref]

Bolton, S. R.

Chemla, D. S.

Cormier, J.-F.

Kean, P. N.

Lee, K. F.

C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, Opt. Commun. 137, 89 (1997).
[Crossref]

Maciel, A. C.

A. C. Maciel, P. Maly, and J. F. Ryan, Phys. Rev. A 39, 5455 (1989), and references therein.
[Crossref] [PubMed]

Maly, P.

A. C. Maciel, P. Maly, and J. F. Ryan, Phys. Rev. A 39, 5455 (1989), and references therein.
[Crossref] [PubMed]

Piché, M.

Ryan, J. F.

A. C. Maciel, P. Maly, and J. F. Ryan, Phys. Rev. A 39, 5455 (1989), and references therein.
[Crossref] [PubMed]

Salin, F.

Sibbett, W.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap.??21, p. 836.

Smith, P. W.

P. W. Smith, Proc. IEEE 58, 1342 (1970).
[Crossref]

Spence, D. E.

Squier, J.

Sucha, G.

Wang, C.

C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, Opt. Commun. 137, 89 (1997).
[Crossref]

Weiss, S.

Xing, Q.

Q. Xing, W. Zhang, and K. M. Yoo, Opt. Commun. 119, 113 (1995).
[Crossref]

Yoo, K. M.

C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, Opt. Commun. 137, 89 (1997).
[Crossref]

Q. Xing, W. Zhang, and K. M. Yoo, Opt. Commun. 119, 113 (1995).
[Crossref]

Zhang, W.

C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, Opt. Commun. 137, 89 (1997).
[Crossref]

Q. Xing, W. Zhang, and K. M. Yoo, Opt. Commun. 119, 113 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

D. H. Auston, IEEE J. Quantum Electron. 4, 420 (1968).
[Crossref]

Opt. Commun. (2)

Q. Xing, W. Zhang, and K. M. Yoo, Opt. Commun. 119, 113 (1995).
[Crossref]

C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, Opt. Commun. 137, 89 (1997).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (1)

A. C. Maciel, P. Maly, and J. F. Ryan, Phys. Rev. A 39, 5455 (1989), and references therein.
[Crossref] [PubMed]

Proc. IEEE (1)

P. W. Smith, Proc. IEEE 58, 1342 (1970).
[Crossref]

Other (3)

See P. F. Barbara, J. G. Fujimoto, W. H. Knox, and W. Zinth, eds., Ultrafast Phenomena X, Vol.??X of Proceedings of the Ultrafast Phenomena Conferences (Springer-Verlag, New York, 1996).
[Crossref]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap.??21, p. 836.

Ref.??11, Chap.??11, p. 657.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Left to right, oscilloscope trace of laser output in normal 84-MHz operation, overlap of the TEM00 mode with the Si photodiode, and image of the spatial mode profile recorded with a CCD detector. (b) Same as (a), except for period-doubled operation.

Fig. 2
Fig. 2

Average output power as a function of position of M3 referred to an arbitrary origin approximately 5  cm from the end of the Ti:sapphire rod. The arrows indicate the scan direction.

Fig. 3
Fig. 3

(a) Dashed curves, electric-field profiles of the TEM00 and TEM01 modes for a confocal resonator at times separated by the cavity round-trip time. Solid curves, total electric-field amplitude for α=0.8. (b) Propagation path of the totally mode-locked TEM00 and TEM01 pulse; the cavity is shown as an unfolded cavity with M3 and M4 replaced by lenses for illustration purposes; angles are exaggerated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ωmnq=qωc+m+n+1ωcθ/2πqωc+m+nΩ+const.,
Et=H00x, y+αH01x, yexp-iΩt×expiΔϕEpulset,

Metrics