Abstract

Guided-mode resonant grating filters have numerous applications. However, in weakly modulated gratings designed for use at normal incidence, the filtering resonance of these subwavelength-period devices splits for angles of incidence that are even slightly off normal incidence. Strongly modulated gratings are designed that essentially overcome this practical problem near normal incidence. In addition, these gratings can have, by design, either broad or narrow spectral characteristics. An experimental demonstration (1.52.0µm wavelength range) of such a normal-incidence guided-mode resonant silicon grating upon a sapphire substrate is presented. The measured reflection resonance had a FWHM of 67–100  nm for angles of incidence of 0–8° and peak efficiency of 80%.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
    [CrossRef]
  2. R. Magnusson and S. S. Wang, Appl. Opt. 34, 8106 (1995).
    [CrossRef] [PubMed]
  3. A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Weber, H. Engel, and R. Steingrueber, Opt. Lett. 21, 1564 (1996).
    [CrossRef] [PubMed]
  4. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, J. Opt. Soc. Am. A 7, 1470 (1990).
    [CrossRef]
  5. S. Peng and G. M. Morris, J. Opt. Soc. Am. A 13, 993 (1996).
    [CrossRef]
  6. L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
    [CrossRef]
  7. R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, IEEE Trans. Antenn. Propag. 42, 567 (1994).
    [CrossRef]
  8. A. Sharon, D. Rosenblatt, and A. A. Friesem, J. Opt. Soc. Am. A 14, 2985 (1997).
    [CrossRef]
  9. S. Peng and G. M. Morris, Opt. Lett. 21, 549 (1996).
    [CrossRef] [PubMed]
  10. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).
    [CrossRef]
  11. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, Appl. Opt. 32, 2695 (1994).
    [CrossRef]
  12. M. Nevière, in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), 123.
    [CrossRef]
  13. D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror or absorber for visible wavelengths based on a silicon subwavelength grating:?design and fabrication,” Appl. Opt. (to be published).

1997 (1)

1996 (3)

1995 (1)

1994 (2)

R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, IEEE Trans. Antenn. Propag. 42, 567 (1994).
[CrossRef]

D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, Appl. Opt. 32, 2695 (1994).
[CrossRef]

1992 (1)

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

1990 (1)

1985 (1)

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

1982 (1)

Bagby, J. S.

Black, T. D.

R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, IEEE Trans. Antenn. Propag. 42, 567 (1994).
[CrossRef]

Brundrett, D. L.

D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, Appl. Opt. 32, 2695 (1994).
[CrossRef]

D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror or absorber for visible wavelengths based on a silicon subwavelength grating:?design and fabrication,” Appl. Opt. (to be published).

Engel, H.

Friesem, A. A.

Gaylord, T. K.

D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, Appl. Opt. 32, 2695 (1994).
[CrossRef]

M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).
[CrossRef]

D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror or absorber for visible wavelengths based on a silicon subwavelength grating:?design and fabrication,” Appl. Opt. (to be published).

Glytsis, E. N.

D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, Appl. Opt. 32, 2695 (1994).
[CrossRef]

D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror or absorber for visible wavelengths based on a silicon subwavelength grating:?design and fabrication,” Appl. Opt. (to be published).

Magnusson, R.

R. Magnusson and S. S. Wang, Appl. Opt. 34, 8106 (1995).
[CrossRef] [PubMed]

R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, IEEE Trans. Antenn. Propag. 42, 567 (1994).
[CrossRef]

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, J. Opt. Soc. Am. A 7, 1470 (1990).
[CrossRef]

Mashev, L.

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

Moharam, M. G.

Morris, G. M.

Nevière, M.

M. Nevière, in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), 123.
[CrossRef]

Peng, S.

Popov, E.

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

Rosenblatt, D.

Sharon, A.

Sohn, A.

R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, IEEE Trans. Antenn. Propag. 42, 567 (1994).
[CrossRef]

Steingrueber, R.

Wang, S. S.

R. Magnusson and S. S. Wang, Appl. Opt. 34, 8106 (1995).
[CrossRef] [PubMed]

R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, IEEE Trans. Antenn. Propag. 42, 567 (1994).
[CrossRef]

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, J. Opt. Soc. Am. A 7, 1470 (1990).
[CrossRef]

Weber, H. G.

Appl. Opt. (2)

R. Magnusson and S. S. Wang, Appl. Opt. 34, 8106 (1995).
[CrossRef] [PubMed]

D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, Appl. Opt. 32, 2695 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, IEEE Trans. Antenn. Propag. 42, 567 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Opt. Commun. (1)

L. Mashev and E. Popov, Opt. Commun. 55, 377 (1985).
[CrossRef]

Opt. Lett. (2)

Other (2)

M. Nevière, in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), 123.
[CrossRef]

D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror or absorber for visible wavelengths based on a silicon subwavelength grating:?design and fabrication,” Appl. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated reflectance (backward diffraction efficiency, R02) of a rectangular-groove silicon-on-sapphire guided-mode resonant grating ns=1.746, nr=3.48, ng=nc=1.00 as a function of groove depth and filling factor.

Fig. 2
Fig. 2

Calculated reflectance (backward diffraction efficiency, R02) of two rectangular-groove silicon-on-sapphire guided-mode resonant grating filters ns=1.746, nr=3.48, ng=nc=1.00 for normal (0°) and 2° incidence. The narrow-band grating has d=0.53 µm and F=0.57. The wideband grating has d=0.41 µm and F=0.62.

Fig. 3
Fig. 3

Scanning electron micrograph of the fabricated silicon-on-sapphire grating. The grating has Λ0.82 µm, d0.51 µm, and F0.57.

Fig. 4
Fig. 4

Experimentally measured reflectance (backward diffraction efficiency, R02) of the fabricated silicon-on-sapphire guided-mode grating filter. Note that the spectral characteristic is stable with respect to a near-normal angle of incidence, as predicted by the analysis for this strongly modulated grating.

Metrics