Abstract

We directly measure the time-independent nonlinear self-phase shift of a pulse after fiber propagation by spectral interferometry. Both the soliton and the nonsoliton case were studied. We verify numerically that the measured phase shift approximates this time-independent phase well.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus and Y. Lai, J. Opt. Soc. Am. B 7, 386 (1990).
    [CrossRef]
  2. K. J. Blow, N. J. Doran, and B. K. Nayar, Opt. Lett. 14, 754 (1989).
    [CrossRef] [PubMed]
  3. W. Wong, S. Namiki, M. Margalit, H. A. Haus, and E. P. Ippen, Opt. Lett. 22, 1150 (1997).
    [CrossRef] [PubMed]
  4. C. Froehly, A. Lacourt, and J. Vienot, J. Opt. (Paris) 4, 183 (1973).
  5. E. Tokunaga, A. Terasaki, and T. Kobayashi, Opt. Lett. 17, 1131 (1992); J. Opt. Soc. Am. B 12, 753 (1995).
    [CrossRef] [PubMed]
  6. F. Reynaud, F. Salin, and A. Barthelemy, Opt. Lett. 14, 275 (1989).
    [CrossRef] [PubMed]
  7. M. Shirasaki, H. A. Haus, and D. L. Wong, in Conference on Lasers and Electro-Optics, Vol. 14 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 284–286.
  8. D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993); R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
    [CrossRef]
  9. S. Namiki, E. P. Ippen, H. A. Haus, and C. Yu, J. Opt. Soc. Am. B 14, 2099 (1997).
    [CrossRef]

1997

1993

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993); R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
[CrossRef]

1992

1990

1989

1973

C. Froehly, A. Lacourt, and J. Vienot, J. Opt. (Paris) 4, 183 (1973).

Barthelemy, A.

Blow, K. J.

Doran, N. J.

Froehly, C.

C. Froehly, A. Lacourt, and J. Vienot, J. Opt. (Paris) 4, 183 (1973).

Haus, H. A.

W. Wong, S. Namiki, M. Margalit, H. A. Haus, and E. P. Ippen, Opt. Lett. 22, 1150 (1997).
[CrossRef] [PubMed]

S. Namiki, E. P. Ippen, H. A. Haus, and C. Yu, J. Opt. Soc. Am. B 14, 2099 (1997).
[CrossRef]

H. A. Haus and Y. Lai, J. Opt. Soc. Am. B 7, 386 (1990).
[CrossRef]

M. Shirasaki, H. A. Haus, and D. L. Wong, in Conference on Lasers and Electro-Optics, Vol. 14 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 284–286.

Ippen, E. P.

Kane, D. J.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993); R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
[CrossRef]

Kobayashi, T.

Lacourt, A.

C. Froehly, A. Lacourt, and J. Vienot, J. Opt. (Paris) 4, 183 (1973).

Lai, Y.

Margalit, M.

Namiki, S.

Nayar, B. K.

Reynaud, F.

Salin, F.

Shirasaki, M.

M. Shirasaki, H. A. Haus, and D. L. Wong, in Conference on Lasers and Electro-Optics, Vol. 14 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 284–286.

Terasaki, A.

Tokunaga, E.

Trebino, R.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993); R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
[CrossRef]

Vienot, J.

C. Froehly, A. Lacourt, and J. Vienot, J. Opt. (Paris) 4, 183 (1973).

Wong, D. L.

M. Shirasaki, H. A. Haus, and D. L. Wong, in Conference on Lasers and Electro-Optics, Vol. 14 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 284–286.

Wong, W.

Yu, C.

IEEE J. Quantum Electron.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993); R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
[CrossRef]

J. Opt. (Paris)

C. Froehly, A. Lacourt, and J. Vienot, J. Opt. (Paris) 4, 183 (1973).

J. Opt. Soc. Am. B

Opt. Lett.

Other

M. Shirasaki, H. A. Haus, and D. L. Wong, in Conference on Lasers and Electro-Optics, Vol. 14 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 284–286.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) ϕNLt=0 versus ϕNLω=0 for β2=-3.6 ps2/km. (b) ϕNLt=0 versus ϕNLω=0 for β2=0.5 ps2/km. The two phases are equal along the straight line.

Fig. 2
Fig. 2

Experimental setup: the zero-dispersion wavelength of the DSF is 1547 nm. The inset is the autocorrelation of the signal–reference pair after the PM fiber. Att., attenuator.

Fig. 3
Fig. 3

Spectra before and after the DSF for different powers: (a) 20-nm span, (b) 1-nm span (center wavelength, 1574  nm). (c) and (d) same as (a) and (b) but for a center wavelength of 1541  nm.

Fig. 4
Fig. 4

(a) Spectral bandwidth for λ0=1574 nm and λ0=1541 nm. (b) Nonlinear phase shift versus input power for λ0=1574 nm and λ0=1541 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Sω=Ssω+Srω+2SsωSrω1/2×cosωτ+ϕ0+Hω,
Sω=Ssω+Srω+2SsωSrω1/2×cosωτ+ϕ0+ϕNL+Hω.

Metrics