Abstract

Greater than 2  W of average power was generated in the infrared region by a AgGaS2 optical parametric oscillator (OPO). A Q-switched mode-locked laser was used to pump the OPO synchronously. Tunability from 1.4 to 1.9 µm and a maximum output power of 750  mW at 1.44 µm were achieved with a standing-wave cavity. Redesigning the cavity into a ring configuration allowed the depleted pump, signal, and idler beams to be extracted efficiently through separate mirrors. This design generated signal and idler beams of high spatial quality at respective power levels of 1.5 and 620  mW at a pulse repetition rate of 2  kHz.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, Opt. Commun. 3, 29 (1971).
    [CrossRef]
  2. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
    [CrossRef]
  3. E. C. Cheung, K. Koch, and G. T. Moore, Opt. Lett. 19, 631 (1994).
    [CrossRef] [PubMed]
  4. T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
    [CrossRef]
  5. D. C. Hanna, V. V. Rampal, and R. C. Smith, Opt. Commun. 8, 151 (1973).
    [CrossRef]
  6. K. Kato, IEEE J. Quantum Electron. QE-20, 698 (1984).
    [CrossRef]
  7. A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59, 211 (1994).
    [CrossRef]
  8. J.-J. Zondy, D. Touahri, and O. Acef, J. Opt. Soc. Am. B 14, 2481 (1997).
    [CrossRef]
  9. S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
    [CrossRef]
  10. Information Sheet on Silver Gallium Sulfide (Cleveland Crystals, Inc., Cleveland, Ohio, 1994).

1997 (1)

1994 (2)

A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59, 211 (1994).
[CrossRef]

E. C. Cheung, K. Koch, and G. T. Moore, Opt. Lett. 19, 631 (1994).
[CrossRef] [PubMed]

1984 (3)

K. Kato, IEEE J. Quantum Electron. QE-20, 698 (1984).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

1979 (1)

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

1973 (1)

D. C. Hanna, V. V. Rampal, and R. C. Smith, Opt. Commun. 8, 151 (1973).
[CrossRef]

1971 (1)

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, Opt. Commun. 3, 29 (1971).
[CrossRef]

Acef, O.

Brandt, G.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Byer, R. L.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Chemla, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, Opt. Commun. 3, 29 (1971).
[CrossRef]

Cheung, E. C.

Eckardt, R. C.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Elsaesser, T.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Fan, Y. X.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Feigelson, R. S.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Hanna, D. C.

D. C. Hanna, V. V. Rampal, and R. C. Smith, Opt. Commun. 8, 151 (1973).
[CrossRef]

Kaiser, W.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Kato, K.

K. Kato, IEEE J. Quantum Electron. QE-20, 698 (1984).
[CrossRef]

Koch, K.

Koidl, P.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Kruck, P.

A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59, 211 (1994).
[CrossRef]

Kupecek, P. J.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, Opt. Commun. 3, 29 (1971).
[CrossRef]

Lohner, A.

A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59, 211 (1994).
[CrossRef]

Moore, G. T.

Rampal, V. V.

D. C. Hanna, V. V. Rampal, and R. C. Smith, Opt. Commun. 8, 151 (1973).
[CrossRef]

Robertson, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, Opt. Commun. 3, 29 (1971).
[CrossRef]

Route, R. K.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Ruhle, W. W.

A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59, 211 (1994).
[CrossRef]

Seilmeier, A.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Smith, R. C.

D. C. Hanna, V. V. Rampal, and R. C. Smith, Opt. Commun. 8, 151 (1973).
[CrossRef]

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, Opt. Commun. 3, 29 (1971).
[CrossRef]

Touahri, D.

Zondy, J.-J.

Appl. Phys. B (1)

A. Lohner, P. Kruck, and W. W. Ruhle, Appl. Phys. B 59, 211 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, Appl. Phys. Lett. 44, 383 (1984).
[CrossRef]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

K. Kato, IEEE J. Quantum Electron. QE-20, 698 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

D. C. Hanna, V. V. Rampal, and R. C. Smith, Opt. Commun. 8, 151 (1973).
[CrossRef]

D. S. Chemla, P. J. Kupecek, D. S. Robertson, and R. C. Smith, Opt. Commun. 3, 29 (1971).
[CrossRef]

Opt. Lett. (1)

Other (1)

Information Sheet on Silver Gallium Sulfide (Cleveland Crystals, Inc., Cleveland, Ohio, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Near- and mid-infrared transmission profile of the 3-cm-long AgGaS2 crystal.

Fig. 2
Fig. 2

Dogleg cavity configuration used to achieve optical parametric oscillation with AgGaS2.

Fig. 3
Fig. 3

Wavelength-tuning characteristics of the AgGaS2 OPO at a pump power of 2.5  W (filled circles). Also shown are the mirror transmissions that limit the tuning range (curves).

Fig. 4
Fig. 4

Ring cavity configuration used to extract the signal and the idler beams from the OPO device.

Fig. 5
Fig. 5

Signal and idler powers measured with the AgGaS2 crystal positioned close to mirror M2 in Fig.  4. The solid lines are included for illustration.

Metrics