Abstract

We fabricated a novel quasi-phase-matched frequency converter, using a zigzag optical beam path in a thin, polished parallel plate. Second-harmonic generation experiments demonstrated angle-tuned output at 4.6 to 5.3 µm in GaAs and 1.7 to 2.0 µm in ZnSe crystals when pulsed infrared laser sources were used.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  2. L. Gordon, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, (Ginzton Laboratory, Stanford University, Stanford, Calif., 1992).
  3. J. A. Armstrong, N. Bloembergen, J. Ducing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  4. G. D. Boyd and C. K. N. Patel, Appl. Phys. Lett. 8, 313 (1966).
    [CrossRef]
  5. A. N. Pikhtin and A. D. Yas’kov, Sov. Phys. Semicond. 12, 622 (1978).
  6. R. Hilton, Optical Properties of Gallium Arsenide (Amorphous Materials, Garland, Tex., 1975).
  7. Optical Crystal Handbook (Optovac, North Brookfield, Mass., 1993), pp. 84–85.

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1978 (1)

A. N. Pikhtin and A. D. Yas’kov, Sov. Phys. Semicond. 12, 622 (1978).

1966 (1)

G. D. Boyd and C. K. N. Patel, Appl. Phys. Lett. 8, 313 (1966).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Boyd, G. D.

G. D. Boyd and C. K. N. Patel, Appl. Phys. Lett. 8, 313 (1966).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

L. Gordon, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, (Ginzton Laboratory, Stanford University, Stanford, Calif., 1992).

Ducing, J.

J. A. Armstrong, N. Bloembergen, J. Ducing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Eckardt, R. C.

L. Gordon, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, (Ginzton Laboratory, Stanford University, Stanford, Calif., 1992).

Feigelson, R. S.

L. Gordon, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, (Ginzton Laboratory, Stanford University, Stanford, Calif., 1992).

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Gordon, L.

L. Gordon, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, (Ginzton Laboratory, Stanford University, Stanford, Calif., 1992).

Hilton, R.

R. Hilton, Optical Properties of Gallium Arsenide (Amorphous Materials, Garland, Tex., 1975).

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Patel, C. K. N.

G. D. Boyd and C. K. N. Patel, Appl. Phys. Lett. 8, 313 (1966).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Pikhtin, A. N.

A. N. Pikhtin and A. D. Yas’kov, Sov. Phys. Semicond. 12, 622 (1978).

Route, R. K.

L. Gordon, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, (Ginzton Laboratory, Stanford University, Stanford, Calif., 1992).

Yas’kov, A. D.

A. N. Pikhtin and A. D. Yas’kov, Sov. Phys. Semicond. 12, 622 (1978).

Appl. Phys. Lett. (1)

G. D. Boyd and C. K. N. Patel, Appl. Phys. Lett. 8, 313 (1966).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Sov. Phys. Semicond. (1)

A. N. Pikhtin and A. D. Yas’kov, Sov. Phys. Semicond. 12, 622 (1978).

Other (3)

R. Hilton, Optical Properties of Gallium Arsenide (Amorphous Materials, Garland, Tex., 1975).

Optical Crystal Handbook (Optovac, North Brookfield, Mass., 1993), pp. 84–85.

L. Gordon, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, (Ginzton Laboratory, Stanford University, Stanford, Calif., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

TIR-QPM optical path schematic: (a) beam coupling by prisms, (b) monolithic structure with slanted edge faces. Transverse beam translation across the tapered crystal length allows one to select a beam-path position as a function of zigzag angle.

Fig. 2
Fig. 2

Angular phase-matching sensitivity data and calculations for a GaAs plate with a thickness of 444 µm (dashed curve), 446 µm (thick curve), and 448 µm (thin curve).

Fig. 3
Fig. 3

Angle tuning of TIR-QPM SHG in ZnSe plate. The filled squares and open triangles are data points, and the solid and dotted curves correspond to the calculated angles for the M=4 and M=3 phase-matching cases, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I3=8π2deff2n12n3λ120cI12L2sinΔkL/2ΔkL/22sinN/2sin/22,

Metrics