Abstract

A fluorozirconate glass doped with trivalent ytterbium ions has been laser cooled in vacuo from 298 to 277  K by optical pumping of the ions at 1015  nm. The cooling effect arises from anti-Stokes fluorescence of the laser-excited ions and by virtue of the near-unit fluorescence quantum efficiency for Yb3+ in sufficiently pure solid hosts. The sample temperatures in the experiment are determined by measurement of the Yb3+ emission spectrum; the value of the observed temperature change from room temperature as a function of pump wavelength is successfully explained in terms of a simple two-level model that includes the effect of optical saturation.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature (London) 377, 500 (1995).
    [CrossRef]
  2. C. Zander and K. H. Drexhage, in Advances in Photochemistry, D. C. Neckers, D. H. Volman, and G. von Bünau, eds. (Wiley, New York, 1995), p. 59.
  3. J. L. Clark and G. Rumbles, Phys. Rev. Lett. 76, 2037 (1996).
    [CrossRef] [PubMed]
  4. C. E. Mungan and T. R. Gosnell, Phys. Rev. Lett. 77, 2840 (1996).
    [CrossRef]
  5. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
    [CrossRef]
  6. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
    [CrossRef]
  7. See Ref.??5 for an example of the relaxation waveform measured with a 250?µm fiber.
  8. W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
    [CrossRef]
  9. A value of 1.0 for the effective emissivity was assumed in Ref.??5.

1997

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

1996

J. L. Clark and G. Rumbles, Phys. Rev. Lett. 76, 2037 (1996).
[CrossRef] [PubMed]

C. E. Mungan and T. R. Gosnell, Phys. Rev. Lett. 77, 2840 (1996).
[CrossRef]

1995

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature (London) 377, 500 (1995).
[CrossRef]

1993

W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
[CrossRef]

Buchwald, M. I.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature (London) 377, 500 (1995).
[CrossRef]

Clark, J. L.

J. L. Clark and G. Rumbles, Phys. Rev. Lett. 76, 2037 (1996).
[CrossRef] [PubMed]

Drexhage, K. H.

C. Zander and K. H. Drexhage, in Advances in Photochemistry, D. C. Neckers, D. H. Volman, and G. von Bünau, eds. (Wiley, New York, 1995), p. 59.

Edwards, B. C.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature (London) 377, 500 (1995).
[CrossRef]

Epstein, R. I.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature (London) 377, 500 (1995).
[CrossRef]

Gosnell, T. R.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

C. E. Mungan and T. R. Gosnell, Phys. Rev. Lett. 77, 2840 (1996).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature (London) 377, 500 (1995).
[CrossRef]

Hasz, W. C.

W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
[CrossRef]

Moynihan, C. T.

W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
[CrossRef]

Mungan, C. E.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

C. E. Mungan and T. R. Gosnell, Phys. Rev. Lett. 77, 2840 (1996).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature (London) 377, 500 (1995).
[CrossRef]

Rumbles, G.

J. L. Clark and G. Rumbles, Phys. Rev. Lett. 76, 2037 (1996).
[CrossRef] [PubMed]

Whang, J. H.

W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
[CrossRef]

Zander, C.

C. Zander and K. H. Drexhage, in Advances in Photochemistry, D. C. Neckers, D. H. Volman, and G. von Bünau, eds. (Wiley, New York, 1995), p. 59.

Appl. Phys. Lett.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Appl. Phys. Lett. 71, 1458 (1997).
[CrossRef]

J. Non-Cryst. Solids

W. C. Hasz, J. H. Whang, and C. T. Moynihan, J. Non-Cryst. Solids 161, 127 (1993).?Owing to the small amount of PbF2 (2–3%) in the ZBLANP composition, values of the mass density and specific heat for ZBLAN are used as approximations to the corresponding values for ZBLANP.
[CrossRef]

Nature (London)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature (London) 377, 500 (1995).
[CrossRef]

Phys. Rev. Lett.

J. L. Clark and G. Rumbles, Phys. Rev. Lett. 76, 2037 (1996).
[CrossRef] [PubMed]

C. E. Mungan and T. R. Gosnell, Phys. Rev. Lett. 77, 2840 (1996).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, Phys. Rev. Lett. 78, 1030 (1997).
[CrossRef]

Other

C. Zander and K. H. Drexhage, in Advances in Photochemistry, D. C. Neckers, D. H. Volman, and G. von Bünau, eds. (Wiley, New York, 1995), p. 59.

A value of 1.0 for the effective emissivity was assumed in Ref.??5.

See Ref.??5 for an example of the relaxation waveform measured with a 250?µm fiber.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Normalized emission spectra for a ZBLANP+1 wt.% Yb3+ fiber of 250µm total diameter, demonstrating cooling of the fiber to 21  K below RT. (a) Temperature calibration spectra, with their arithmetic difference plotted in the inset. The sample's temperature differs by 13  K between the two spectra. (b) Spectra obtained for two values of the pump power at 1015  nm, with their difference plotted in the inset. Based on the calibration data in (a), the laser-induced temperature drop from RT is 21  K.

Fig. 2
Fig. 2

Temperature changes, normalized by the pump power, measured as a function of pump wavelength (filled circles). The sample is a 250µm diameter ZBLANP fiber doped with 1-wt.  % Yb3+. The solid curve shows a fit of Eq.  (6) to the data, with fitting parameters λF*=997.6 nm and aeff=7.92×10-5 cm2. The dotted curve shows the expected temperature changes in the absence of optical saturation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dndt=0=Pλaeffhcnσabsλ-nσseλ-γradn, 
Pcoolλ=aeffL-Paeffnσabs-nσse+hcλFγradn-κn,
Pcool=NσabsLaeffISλ/λF*-11+σse/σabs+aeffIS/P,
Pload=AνπBνTR-BνTSdν, 
Pload-AνπBνTT|TRΔTdν=-4AeffσBTR3ΔT, 
ΔTP=NσabsaeffIS/P1-λ/λF*4πDeffσBTR31+σse/σabs+aeffIS/P,

Metrics