Abstract

A simple new three-wave interferometric technique is used to measure, for what is believed to be the first time, the wave front of femtosecond ultrahigh-peak-power pulses carrying a strong B integral B=5.26±0.15 in a single shot. Wave-front distortions of a terawatt-class laser system are measured with good accuracy λ/50 and discussed. These distortions can significantly reduce the focused peak intensity, emphasizing the necessity of implementing adaptive optics in ultrahigh-intensity chirped-pulse amplification lasers.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
    [CrossRef]
  2. P. Gibbons and E. Förster, Plasma Phys. Controlled Fusion 38, 769 (1996).
    [CrossRef]
  3. J. C. Chanteloup, H. Baldis, A. Migus, G. Mourou, B. Loiseaux, and J. P. Huignard, Opt. Lett. 23, 475 (1998).
    [CrossRef]
  4. J. Primot and L. Sogno, J. Opt. Soc. Am. A 12, 2679 (1995).
    [CrossRef]
  5. D. Du, J. Squier, S. Kane, G. Korn, G. Mourou, C. Bogusch, and C. Cotton, Opt. Lett. 20, 2114 (1995).
    [CrossRef] [PubMed]
  6. N. L. Boling, A. J. Glass, and A. Owyoung, IEEE J. Quantum Electron. 14, 601 (1978).
    [CrossRef]
  7. O. E. Martinez, J. Opt. Soc. Am. B 3, 929 (1986).
    [CrossRef]

1998 (1)

1996 (1)

P. Gibbons and E. Förster, Plasma Phys. Controlled Fusion 38, 769 (1996).
[CrossRef]

1995 (2)

1986 (1)

1985 (1)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

1978 (1)

N. L. Boling, A. J. Glass, and A. Owyoung, IEEE J. Quantum Electron. 14, 601 (1978).
[CrossRef]

Baldis, H.

Bogusch, C.

Boling, N. L.

N. L. Boling, A. J. Glass, and A. Owyoung, IEEE J. Quantum Electron. 14, 601 (1978).
[CrossRef]

Chanteloup, J. C.

Cotton, C.

Du, D.

Förster, E.

P. Gibbons and E. Förster, Plasma Phys. Controlled Fusion 38, 769 (1996).
[CrossRef]

Gibbons, P.

P. Gibbons and E. Förster, Plasma Phys. Controlled Fusion 38, 769 (1996).
[CrossRef]

Glass, A. J.

N. L. Boling, A. J. Glass, and A. Owyoung, IEEE J. Quantum Electron. 14, 601 (1978).
[CrossRef]

Huignard, J. P.

Kane, S.

Korn, G.

Loiseaux, B.

Martinez, O. E.

Migus, A.

Mourou, G.

Owyoung, A.

N. L. Boling, A. J. Glass, and A. Owyoung, IEEE J. Quantum Electron. 14, 601 (1978).
[CrossRef]

Primot, J.

Sogno, L.

Squier, J.

Strickland, D.

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. L. Boling, A. J. Glass, and A. Owyoung, IEEE J. Quantum Electron. 14, 601 (1978).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Opt. Lett. (2)

Plasma Phys. Controlled Fusion (1)

P. Gibbons and E. Förster, Plasma Phys. Controlled Fusion 38, 769 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simplified view of the ATWLSI and its resulting inteferogram. The interfringe spacing i depends only on the grating pitch dG and is then independent of the wavelength, making this wave-front sensor achromatic.

Fig. 2
Fig. 2

Double 4f image-relay setup for nonlinear phase measurement. The first two lenses image relay the nonlinear phase onto the entrance of the interferometer, i.e., the 2D binary grating. The second telescope image relays a plane located after the grating onto the CCD sensor.

Fig. 3
Fig. 3

Phase and intensity profiles of a 45-mJ, 100-fs pulse traveling through a 1-cm-thick piece of glass. The curvature of the phase indicates a B integral of 5.26±0.15 rad. The pupil diameter is 22  mm.

Fig. 4
Fig. 4

Intensity and phase profiles recorded simultaneously with the ATWLSI. Peak-to-peak values are given in waves (1 wave  =   λ=780 nm).

Metrics