Abstract

A new method of one-way image transmission through a thick dynamic distorter without the need for a reference beam or four-wave mixing is demonstrated. In this method there are only one object beam and one sampling beam. The response time of the photorefractive crystal must be much longer than the fluctuation period of the dynamic distorter. Thus the crystal responds only to the time-averaged intensity pattern of a rapidly varying object beam. The images, reconstructed with high fidelity, are picked up through the photorefractive fanning effect.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
    [CrossRef]
  2. J. D. Gaskill, J. Opt. Soc. Am. 58, 600 (1968).
    [CrossRef]
  3. H. Kogelnik and K. S. Pennington, J. Opt. Soc. Am. 58, 273 (1968).
    [CrossRef]
  4. J. W. Goodman, D. W. Jackson, M. Lehmann, and J. Knotts, Appl. Opt. 8, 1581 (1969).
    [CrossRef] [PubMed]
  5. A. Yariv and T. Koch, Opt. Lett. 7, 113 (1982).
    [CrossRef] [PubMed]
  6. B. Fisher, M. Cronin-Golomb, J. O. White, and A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
    [CrossRef]
  7. O. Ikeda, T. Suzuki, and T. Sato, Appl. Opt. 22, 2192 (1983).
    [CrossRef]
  8. O. Ikeda, T. Sato, and M. Takehara, Appl. Opt. 22, 3562 (1983).
    [CrossRef] [PubMed]
  9. T. G. Alley, M. A. Kramer, D. R. Martinez, and L. P. Schelonka, Opt. Lett. 15, 81 (1990).
    [CrossRef] [PubMed]
  10. M. A. Kramer, T. G. Alley, D. R. Martinez, and L. P. Schelonka, Appl. Opt. 29, 2576 (1990).
    [CrossRef] [PubMed]
  11. J. Feinberg, Appl. Phys. Lett. 42, 30 (1983).
    [CrossRef]
  12. K. R. MacDonald, W. R. Tompkin, and R. W. Boyd, Opt. Lett. 13, 485 (1988).
    [CrossRef] [PubMed]
  13. Z. Li and Y. Zhang, Opt. Commun. 81, 11 (1991).
    [CrossRef]
  14. H. S. Lee and H. Fenichel, Appl. Phys. Lett. 55, 543 (1989).
    [CrossRef]
  15. Y. Sun and M. G. Moharam, Appl. Opt. 32, 1954 (1993).
    [CrossRef] [PubMed]
  16. J. Khoury, J. Fu, and C. L. Woods, Opt. Lett. 19, 1645 (1994).
    [CrossRef] [PubMed]
  17. M. A. Kramer, C. J. Wetterer, and T. Martinez, Appl. Opt. 30, 3319 (1991).
    [CrossRef] [PubMed]
  18. D. Peri, Opt. Commun. 67, 409 (1988).
    [CrossRef]
  19. J. Zhang, H. Wang, S. Yoshikado, and T. Aruga, Opt. Lett. 22, 1612 (1997).
    [CrossRef]

1997 (1)

1994 (1)

1993 (1)

1991 (2)

1990 (2)

1989 (1)

H. S. Lee and H. Fenichel, Appl. Phys. Lett. 55, 543 (1989).
[CrossRef]

1988 (2)

1983 (3)

1982 (2)

A. Yariv and T. Koch, Opt. Lett. 7, 113 (1982).
[CrossRef] [PubMed]

B. Fisher, M. Cronin-Golomb, J. O. White, and A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

1969 (1)

1968 (2)

1966 (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Alley, T. G.

Aruga, T.

Boyd, R. W.

Cronin-Golomb, M.

B. Fisher, M. Cronin-Golomb, J. O. White, and A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

Feinberg, J.

J. Feinberg, Appl. Phys. Lett. 42, 30 (1983).
[CrossRef]

Fenichel, H.

H. S. Lee and H. Fenichel, Appl. Phys. Lett. 55, 543 (1989).
[CrossRef]

Fisher, B.

B. Fisher, M. Cronin-Golomb, J. O. White, and A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

Fu, J.

Gaskill, J. D.

Goodman, J. W.

J. W. Goodman, D. W. Jackson, M. Lehmann, and J. Knotts, Appl. Opt. 8, 1581 (1969).
[CrossRef] [PubMed]

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Huntley, W. H.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Ikeda, O.

Jackson, D. W.

J. W. Goodman, D. W. Jackson, M. Lehmann, and J. Knotts, Appl. Opt. 8, 1581 (1969).
[CrossRef] [PubMed]

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Khoury, J.

Knotts, J.

Koch, T.

Kogelnik, H.

Kramer, M. A.

Lee, H. S.

H. S. Lee and H. Fenichel, Appl. Phys. Lett. 55, 543 (1989).
[CrossRef]

Lehmann, M.

J. W. Goodman, D. W. Jackson, M. Lehmann, and J. Knotts, Appl. Opt. 8, 1581 (1969).
[CrossRef] [PubMed]

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Li, Z.

Z. Li and Y. Zhang, Opt. Commun. 81, 11 (1991).
[CrossRef]

MacDonald, K. R.

Martinez, D. R.

Martinez, T.

Moharam, M. G.

Pennington, K. S.

Peri, D.

D. Peri, Opt. Commun. 67, 409 (1988).
[CrossRef]

Sato, T.

Schelonka, L. P.

Sun, Y.

Suzuki, T.

Takehara, M.

Tompkin, W. R.

Wang, H.

Wetterer, C. J.

White, J. O.

B. Fisher, M. Cronin-Golomb, J. O. White, and A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

Woods, C. L.

Yariv, A.

B. Fisher, M. Cronin-Golomb, J. O. White, and A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

A. Yariv and T. Koch, Opt. Lett. 7, 113 (1982).
[CrossRef] [PubMed]

Yoshikado, S.

Zhang, J.

Zhang, Y.

Z. Li and Y. Zhang, Opt. Commun. 81, 11 (1991).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (4)

H. S. Lee and H. Fenichel, Appl. Phys. Lett. 55, 543 (1989).
[CrossRef]

B. Fisher, M. Cronin-Golomb, J. O. White, and A. Yariv, Appl. Phys. Lett. 41, 141 (1982).
[CrossRef]

J. Feinberg, Appl. Phys. Lett. 42, 30 (1983).
[CrossRef]

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Commun. (2)

Z. Li and Y. Zhang, Opt. Commun. 81, 11 (1991).
[CrossRef]

D. Peri, Opt. Commun. 67, 409 (1988).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. Lenses L1 and L4 have a focal length of 200  mm; lenses L2 and L3 have a focal length of 400  mm. M1, M2, mirrors. Other abbreviations are defined in text.

Fig. 2
Fig. 2

Photographs of the transmitted image (a) before and (b) after the distorter was turned on. (c) The reconstructed image.

Fig. 3
Fig. 3

Resolution of the reconstructed image versus intensity ratio β of the object beam to the sampling beam. The solid curve is a guide for the eye.

Fig. 4
Fig. 4

Establishing () and erasing () response times of fanning versus the intensity of the sampling beam. For the erasing response time the intensity ratio is β=4.4. The establishing and erasing response times can be fitted by t1/ees=242.4/I1.0 mW/cm2 and t1/eer=30.1/I0.89 mW/cm2, respectively.

Metrics