Abstract

We propose the use of high-index materials for the fabrication of subwavelength diffractive components operating in the visible domain. This approach yields a reduction of fabrication constraints and an improvement of theoretical performance. A blazed grating with subwavelength binary features and with a period of 5.75 wavelengths is designed and fabricated in a TiO2 layer coated upon a glass substrate. The first-order diffraction efficiency measured with a He–Ne laser beam is 83%, which is slightly larger than that achieved theoretically by the best standard (continuous profile) blazed grating fabricated in glass with the same period.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Stork, N. Streibl, H. Haidner, and P. Kipfer, Opt. Lett. 16, 1921 (1991).
    [CrossRef] [PubMed]
  2. M. W. Farn, Appl. Opt. 31, 4453 (1992).
    [CrossRef] [PubMed]
  3. H. Haider, J. T. Sheridan, and N. Streibl, Appl. Opt. 32, 4276 (1993).
    [CrossRef]
  4. Z. Zhou and T. J. Drabik, J. Opt. Soc. Am. A 12, 1104 (1995).
    [CrossRef]
  5. M. E. Warren, R. E. Smith, G. A. Vawter, and J. R. Wendt, Opt. Lett. 20, 1441 (1995).
    [CrossRef] [PubMed]
  6. P. Kipfer, M. Collischon, H. Haidner, and J. Schwider, Opt. Eng. 35, 726 (1996).
    [CrossRef]
  7. F. T. Chen and H. C. Craighead, Opt. Lett. 20, 121 (1995).
    [CrossRef] [PubMed]
  8. F. T. Chen and H. C. Craighead, Opt. Lett. 21, 177 (1996).
    [CrossRef] [PubMed]
  9. J. M. Miller, N. de Beaucoudrey, P. Chavel, E. Cambril, and H. Launois, Opt. Lett. 21, 1399 (1996).
    [CrossRef] [PubMed]
  10. Ph. Lalanne and G. M. Morris, J. Opt. Soc. Am. A 13, 779 (1996).
    [CrossRef]
  11. S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

1996

1995

1993

1992

1991

1956

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Cambril, E.

Chavel, P.

Chen, F. T.

Collischon, M.

P. Kipfer, M. Collischon, H. Haidner, and J. Schwider, Opt. Eng. 35, 726 (1996).
[CrossRef]

Craighead, H. C.

de Beaucoudrey, N.

Drabik, T. J.

Farn, M. W.

Haider, H.

Haidner, H.

P. Kipfer, M. Collischon, H. Haidner, and J. Schwider, Opt. Eng. 35, 726 (1996).
[CrossRef]

W. Stork, N. Streibl, H. Haidner, and P. Kipfer, Opt. Lett. 16, 1921 (1991).
[CrossRef] [PubMed]

Kipfer, P.

P. Kipfer, M. Collischon, H. Haidner, and J. Schwider, Opt. Eng. 35, 726 (1996).
[CrossRef]

W. Stork, N. Streibl, H. Haidner, and P. Kipfer, Opt. Lett. 16, 1921 (1991).
[CrossRef] [PubMed]

Lalanne, Ph.

Launois, H.

Miller, J. M.

Morris, G. M.

Rytov, S. M.

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Schwider, J.

P. Kipfer, M. Collischon, H. Haidner, and J. Schwider, Opt. Eng. 35, 726 (1996).
[CrossRef]

Sheridan, J. T.

Smith, R. E.

Stork, W.

Streibl, N.

Vawter, G. A.

Warren, M. E.

Wendt, J. R.

Zhou, Z.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diffraction efficiency (solid curve) for TM polarization as a function of the maximum index n for a linearly index-modulated grating. The grating period is 5.75λ. The circles represent the percentage of the total transmitted light diffracted into the first order.

Fig. 2
Fig. 2

Grating profiles for different steps of the design. Only one grating period is shown: (a) from effective medium theory, (b) after refinement of the transition-point locations.

Fig. 3
Fig. 3

Scanning-electron micrograph of a single period of the subwavelength blazed grating.

Fig. 4
Fig. 4

First-order diffraction efficiency as a function of the standard error deviation of linewidths. Each point is averaged over 100 independent instances of fabrication errors.

Metrics