Abstract

Programming an optical coherent transient true-time delay device with two frequency-chirped pulses provides a novel means of performing broadband GHz true-time delay with a wide dynamic range of delays with fine temporal resolution. We have demonstrated true-time delays exceeding 2 µs with sub-100-ps resolution. Chirped-pulse programming has the advantages over the previously proposed brief pulse programming [Opt. Lett.   21, 1102 (1996)] of reduced instantaneous power requirements and the ability to control the true-time delay by frequency shifting the programming pulses.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Frigyes and A. J. Seeds, IEEE Trans. Microwave Theory Tech. 43, 2378 (1995).
    [CrossRef]
  2. K. D. Merkel and W. R. Babbitt, Opt. Lett. 21, 1102 (1996).
    [CrossRef] [PubMed]
  3. W. R. Babbitt and J. A. Bell, Appl. Opt. 33, 1538 (1994).
    [CrossRef] [PubMed]
  4. LFCP's have been used to program optical coherent transient memories and signal processors:?Y. S. Bai, W. R. Babbitt, and T. W. Mossberg, Opt. Lett. 11, 724 (1986); S. Kroll and U. Elman, Opt. Lett. 18, 1834 (1993); H. Lin, T. Wang, G. A. Wilson, and T. W. Mossberg, Opt. Lett. 20, 91 (1995); K. D. Merkel and W. R. Babbitt, Appl. Opt. 35, 278 (1996).
    [CrossRef] [PubMed]
  5. R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
    [CrossRef] [PubMed]

1996 (1)

1995 (1)

I. Frigyes and A. J. Seeds, IEEE Trans. Microwave Theory Tech. 43, 2378 (1995).
[CrossRef]

1994 (2)

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

W. R. Babbitt and J. A. Bell, Appl. Opt. 33, 1538 (1994).
[CrossRef] [PubMed]

1986 (1)

Babbitt, W. R.

Bai, Y. S.

Bell, J. A.

Cone, R. L.

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Equall, R. W.

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Frigyes, I.

I. Frigyes and A. J. Seeds, IEEE Trans. Microwave Theory Tech. 43, 2378 (1995).
[CrossRef]

Macfarlane, R. M.

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Merkel, K. D.

Mossberg, T. W.

Seeds, A. J.

I. Frigyes and A. J. Seeds, IEEE Trans. Microwave Theory Tech. 43, 2378 (1995).
[CrossRef]

Sun, Y.

R. W. Equall, Y. Sun, R. L. Cone, and R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the delay programming techniques. (a) Programming of delay τd=τ21 with brief pulses. (b) Programming of delay τd=τ21 with identical LFCP's. (c) Increasing the delay τd by raising νs2 without changing the timing. (d) Decreasing the delay τd by lowering νs2.

Fig. 2
Fig. 2

Experimental input pulse sequences showing the two LFCP's and the regeneration pulse for the four values of τ21 used.

Fig. 3
Fig. 3

Output signals generated by changing νs2 in 5-MHz increments, resulting in delay shifts of 125  ns.

Fig. 4
Fig. 4

Output signals generated by changing νs2 in 1-MHz increments, resulting in delay shifts of 25  ns.

Fig. 5
Fig. 5

Plot of signal arrival time versus δνs21 for frequency increments of 10 and 1  kHz. The solid line has a slope of τc/δνc=1 µs/40 MHz, and its offset is least-squares fitted to data.

Metrics