Abstract

We describe a Ti:sapphire-pumped picosecond optical parametric oscillator based on periodically poled RbTiOAsO4 that is broadly tunable in the near to mid infrared. A 4.5-mm single-grating crystal at room temperature in combination with pump wavelength tuning provided access to a continuous-tuning range from 3.35 to 5 µm, and a pump power threshold of 90  mW was measured. Average mid-infrared output powers in excess of 100  mW and total output powers of 400  mW in 1ps pulses were obtained at 33% extraction efficiency.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, R. L. Byer and A. Piskarkas, eds., feature on optical parametric oscillation and amplification, J. Opt. Soc. Am. B 10, 1659–2239 (1993); W. R. Bosenberg and R. C. Eckardt, eds., feature on optical parametric devices, J. Opt. Soc. Am. B 12, 2087–2322 (1995).
    [CrossRef]
  2. G. R. Holtom, R. A. Crowell, and L. K. Cheng, Opt. Lett. 20, 1880 (1995).
    [CrossRef] [PubMed]
  3. S. W. McCahon, S. A. Anson, D.-J. Jang, and T. F. Boggess, Opt. Lett. 20, 2309 (1995).
    [CrossRef]
  4. D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Gunther, Appl. Phys. Lett. 68, 452 (1996).
    [CrossRef]
  5. D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
    [CrossRef]
  6. A. Nebel, C. Fallnich, R. Beigang, and R. Wallenstein, J. Opt. Soc. Am. B 10, 2195 (1993).
    [CrossRef]
  7. M. Ebrahimzadeh, S. French, and A. Miller, J. Opt. Soc. Am. B 12, 2180 (1995).
    [CrossRef]
  8. S. French, M. Ebrahimzadeh, and A. Miller, Opt. Lett. 21, 131 (1996).
    [CrossRef] [PubMed]
  9. S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, Opt. Lett. 22, 618 (1997).
    [CrossRef] [PubMed]
  10. H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556 (1996).
    [CrossRef]
  11. D. L. Fenimore, K. L. Schepler, D. Zelmon, S. Kück, U. B. Ramabadran, P. Von Richter, and D. Small, J. Opt. Soc. Am. B 13, 1935 (1996).
    [CrossRef]

1997

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
[CrossRef]

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, Opt. Lett. 22, 618 (1997).
[CrossRef] [PubMed]

1996

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556 (1996).
[CrossRef]

D. L. Fenimore, K. L. Schepler, D. Zelmon, S. Kück, U. B. Ramabadran, P. Von Richter, and D. Small, J. Opt. Soc. Am. B 13, 1935 (1996).
[CrossRef]

S. French, M. Ebrahimzadeh, and A. Miller, Opt. Lett. 21, 131 (1996).
[CrossRef] [PubMed]

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Gunther, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

1995

1993

Anson, S. A.

Arvidsson, G.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556 (1996).
[CrossRef]

Beigang, R.

Boggess, T. F.

Bosshard, C.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Gunther, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Butterworth, S. D.

Cheng, L. K.

Crowell, R. A.

Ebrahimzadeh, M.

Fallnich, C.

Fenimore, D. L.

French, S.

Gunther, P.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Gunther, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Hanna, D. C.

Henriksson, P.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556 (1996).
[CrossRef]

Holtom, G. R.

Jang, D.-J.

Karlsson, H.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556 (1996).
[CrossRef]

Kück, S.

Laurell, F.

H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, Electron. Lett. 32, 556 (1996).
[CrossRef]

McCahon, S. W.

McGowan, C.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
[CrossRef]

Miller, A.

Nebel, A.

Ramabadran, U. B.

Reid, D. T.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
[CrossRef]

Schepler, K. L.

Sibbett, W.

D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbett, IEEE J. Quantum Electron. 33, 1 (1997).
[CrossRef]

Small, D.

Smith, P. G. R.

Spence, D. E.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Gunther, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Tang, C. L.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Gunther, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Von Richter, P.

Wallenstein, R.

Wielandy, S.

D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Gunther, Appl. Phys. Lett. 68, 452 (1996).
[CrossRef]

Zelmon, D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cavity schematic of the picosecond PPRTA OPO. The dashed box is the prism sequence that is inserted into the cavity for dispersion compensation. HR/OC, high reflector/output coupler.

Fig. 2
Fig. 2

Pump wavelength tuning of the PPRTA picosecond OPO for various grating periods, Λ=29, 30, 31 µm at room temperature (26 °C). The tuning curves are calculated from the Sellmeier relations of Ref.  11, and the experimental data correspond to Λ=30 µm.

Fig. 3
Fig. 3

Average output power versus input pump power at a wavelength of 1.070 µm for various signal output couplers. HR, high reflector.

Fig. 4
Fig. 4

Intensity autocorrelation and spectra of signal pulses from the dispersion-compensated OPO. The pulse duration is 714  fs and the spectral bandwidth is 3 nm, resulting in a time–bandwidth product ΔτΔν0.56. SHG, second-harmonic generation.

Fig. 5
Fig. 5

Intensity autocorrelation and spectra of idler pulses from the dispersion-compensated OPO. The pulse duration is 1 ps and the spectral bandwidth is 35 nm, resulting in a time–bandwidth product ΔτΔν0.7. SHG, second-harmonic generation.

Metrics