Abstract

Using a lossless dispersive apparatus consisting of six prisms, optimized to match a second-harmonic crystal phase-matching angle versus wavelength to second order, we efficiently doubled tunable fundamental light near 660  nm over a range of 80  nm, using a 4-mm-long type I β-barium borate crystal without tuning the crystal angle. Another set of six prisms after the crystal realigned the propagation directions of the various second-harmonic frequencies to be collinear to within 1/4 spot diameter in position and 200 µrad in angle. The measured conversion efficiency of a 40-mJ, 5-ns fundamental pulse was 10%.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
    [CrossRef]
  2. O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
    [CrossRef]
  3. G. Szabo and Z. Bor, Appl. Phys. B 50, 51 (1990).
    [CrossRef]
  4. R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
    [CrossRef]
  5. S. Saikan, D. Ouw, and F. P. Schäfer, Appl. Opt. 18, 193 (1979).
    [CrossRef] [PubMed]
  6. V. D. Volosov and E. V. Goryachkina, Sov. J. Quantum Electron. 6, 854 (1976).
    [CrossRef]
  7. B. A. Richman, S. E. Bisson, R. Trebino, M. G. Mitchell, E. Sidick, and A. Jacobson, Opt. Lett. 22, 1223 (1997).
    [CrossRef] [PubMed]
  8. S. Kane and J. Squier, J. Opt. Soc. Am. B 14, 661 (1997).
    [CrossRef]

1997 (2)

1990 (2)

G. Szabo and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

1989 (1)

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

1979 (1)

1976 (1)

V. D. Volosov and E. V. Goryachkina, Sov. J. Quantum Electron. 6, 854 (1976).
[CrossRef]

Bisson, S. E.

Bor, Z.

G. Szabo and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
[CrossRef]

Goryachkina, E. V.

V. D. Volosov and E. V. Goryachkina, Sov. J. Quantum Electron. 6, 854 (1976).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
[CrossRef]

Jacobson, A.

Kane, S.

Martinez, O. E.

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

Mitchell, M. G.

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
[CrossRef]

Ouw, D.

Richman, B. A.

Saikan, S.

Schäfer, F. P.

Short, R. W.

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

Sidick, E.

Skupsky, S.

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

Squier, J.

Szabo, G.

G. Szabo and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

Trebino, R.

Volosov, V. D.

V. D. Volosov and E. V. Goryachkina, Sov. J. Quantum Electron. 6, 854 (1976).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

G. Szabo and Z. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. W. Short and S. Skupsky, IEEE J. Quantum Electron. 26, 580 (1990).
[CrossRef]

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

V. D. Volosov and E. V. Goryachkina, Sov. J. Quantum Electron. 6, 854 (1976).
[CrossRef]

Other (1)

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, Berlin, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the APM device, showing prism apex angles and beam incident angles at the 650-nm fundamental wavelength (325-nm second harmonic). Prisms 1 and 2 disperse the fundamental beam spatially (but not angularly) so that prisms 3–6 cause all beams to converge in the crystal. Prisms 4–6 (Littrow) mostly magnify the dispersion of prism 3. The output side of the APM device is qualitatively the reverse of the input.

Fig. 2
Fig. 2

Contour plot of the experimentally measured small-signal relative second-harmonic conversion efficiency versus wavelength and crystal angle. The solid curve is the theoretically predicted difference between the dispersion and the exact phase-matching angles. This curve should ideally follow the experimental maxima.

Fig. 3
Fig. 3

Slice of the data in Fig.  2 at constant (zero) crystal angle, compared with the theoretically predicted relative conversion efficiency (solid curve). Both have a FWHM bandwidth of 80  nm. Also shown is the theoretically predicted conversion efficiency when one is using a single grating operating at the Littrow condition (dashed curve). Its bandwidth is only 15  nm. SH, second harmonic.

Fig. 4
Fig. 4

Experimentally measured second-harmonic beam position (triangles) and angle (circles) versus wavelength, in the plane of dispersion, at the output of the APM device. The solid curve is the model-predicted angle.

Metrics