Abstract

We describe a new method for semiconductor laser FM noise reduction. A Doppler-free Faraday resonance in Cs vapor provided optical feedback, and FM sideband saturation spectroscopy in a second Cs cell provided electronic feedback. The combined optical and electronic feedback allowed us to reduce the low-frequency FM noise power by more than 6 orders of magnitude, which resulted in a sub-100-Hz-linewidth semiconductor laser locked directly to an atomic transition frequency.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, R. Nabiev, and K. Vahala, Opt. Lett. 15, 1359 (1990).
    [CrossRef] [PubMed]
  2. Y. Shevy, J. Iannelli, J. Kitching, and A. Yariv, Opt. Lett. 17, 661 (1992).
    [CrossRef] [PubMed]
  3. R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  4. Y. Shevy, J. Kitching, and A. Yariv, Opt. Lett. 18, 1071 (1993).
    [CrossRef]

1993 (1)

1992 (1)

1990 (1)

1983 (1)

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Drever, R.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ford, G.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hall, J.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hough, J.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Iannelli, J.

Kitching, J.

Kowalsky, F.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Manley, M.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Nabiev, R.

Shevy, Y.

Vahala, K.

Ward, H.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Yariv, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: L's, lenses; P, polarizer; M, mirror; λ/2, half wave plate; PBS, polarizing beam splitter; PZT, piezoelectric transducer; APD's, avalanche photodiodes; DBM's, doubly balanced mixers.

Fig. 2
Fig. 2

Free-running laser field measured with an optical spectrum analyzer (dotted curve) and the same spectrum calculated from trace a of Fig.  3 and a white-noise level of 1.1 MHz2/Hz (solid curve).

Fig. 3
Fig. 3

FM noise power for a, the free-running laser; b, optical feedback only; and c, a combination of optical and electronic feedback.

Fig. 4
Fig. 4

Field spectrum for a combination of optical and electronic feedback calculated from the data of Fig.  3, trace c. The solid curve is a Lorentzian fit with a FWHM of 44  Hz.

Fig. 5
Fig. 5

Square root of the Allan variance calculated from Fig.  3: a, free-running laser; b, optical feedback only; and c, a combination of optical and electronic feedback.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sφ·=Sφ·ST1+α21+αCr+Ci2=Sφ·ST1+α2Q2,
Q=1+1+α2κωτ0+ϕ/ω×cosϕ+tan-1 α,
Iν=4 Re -exp2πiν-ν0τ×exp-2πτ2σ2τdτ,

Metrics