Abstract

We generated the second harmonics of pulses in the far-infrared region 3055 µm, using the organic salt dimethylamino-4-N-methylstilbazolium tosylate (DAST). We demonstrate that DAST can be used to characterize ultrashort pulses in a spectral region where no other materials are available. To illustrate the need for such characterizations, we show the effects of propagation through air on the shape of ultrashort far-infrared pulses.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. H. Knippels, R. F. X. A. M. Mols, A. F. G. van der Meer, D. Oepts, and P. W. van Amersfoort, Phys. Rev. Lett. 75, 1755 (1995)G. M. H. Knippels, “The short-pulse free-electron laser:?manipulation of the gain medium,” Ph.D. dissertation (Free University, Amsterdam, The Netherlands, 1996).
    [CrossRef] [PubMed]
  2. B. A. Richman, M. A. Krumbügel, and R. Trebino, Opt. Lett. 22, 721 (1997).
    [CrossRef] [PubMed]
  3. S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 626 (1989).
    [CrossRef] [PubMed]
  4. J. W. Perry, S. R. Marder, K. J. Perry, E. T. Sleva, C. Yakymyshyn, K. R. Stewart, and E. P. Boden, Proc. SPIE 1560, 302 (1991).
    [CrossRef]
  5. X.-C. Zhang and Y. Jin, in Perspectives in Optoelectronics, S. S. Jha, ed. (World Scientific, Singapore, 1994), pp. 81–138.
  6. D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, Infrared Phys. Technol. 36, 297 (1995).
    [CrossRef]
  7. For the SHG of the fundamental wavelength between 30 and 36 µm we used a bandpass filter with a 23–35?µm transmittance window.
  8. For the SHG of the fundamental wavelength between 47 and 55 µm we used a wire mesh filter, which is a long-wavelength pass filter with a cut-on wavelength of ?30 µm.
  9. Anhydrous crystals of DAST were purchased from Molecular Opto-Electronics Corporation, Watervliet, N.Y.
  10. A ZnSe filter (transparent for wavelengths below 20 µm) removed the fundamental wavelength between 30 and 36 µm, and the 23–35?µm transmittance bandpass filter7 removed the fundamental wavelength between 47 and 55 µm.
  11. K. D. Möller and W. G. Rothschild, Far-Infrared Spectroscopy (Wiley, New York, 1971).

1997 (1)

1995 (2)

G. M. H. Knippels, R. F. X. A. M. Mols, A. F. G. van der Meer, D. Oepts, and P. W. van Amersfoort, Phys. Rev. Lett. 75, 1755 (1995)G. M. H. Knippels, “The short-pulse free-electron laser:?manipulation of the gain medium,” Ph.D. dissertation (Free University, Amsterdam, The Netherlands, 1996).
[CrossRef] [PubMed]

D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, Infrared Phys. Technol. 36, 297 (1995).
[CrossRef]

1991 (1)

J. W. Perry, S. R. Marder, K. J. Perry, E. T. Sleva, C. Yakymyshyn, K. R. Stewart, and E. P. Boden, Proc. SPIE 1560, 302 (1991).
[CrossRef]

1989 (1)

S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 626 (1989).
[CrossRef] [PubMed]

Boden, E. P.

J. W. Perry, S. R. Marder, K. J. Perry, E. T. Sleva, C. Yakymyshyn, K. R. Stewart, and E. P. Boden, Proc. SPIE 1560, 302 (1991).
[CrossRef]

Jin, Y.

X.-C. Zhang and Y. Jin, in Perspectives in Optoelectronics, S. S. Jha, ed. (World Scientific, Singapore, 1994), pp. 81–138.

Knippels, G. M. H.

G. M. H. Knippels, R. F. X. A. M. Mols, A. F. G. van der Meer, D. Oepts, and P. W. van Amersfoort, Phys. Rev. Lett. 75, 1755 (1995)G. M. H. Knippels, “The short-pulse free-electron laser:?manipulation of the gain medium,” Ph.D. dissertation (Free University, Amsterdam, The Netherlands, 1996).
[CrossRef] [PubMed]

Krumbügel, M. A.

Marder, S. R.

J. W. Perry, S. R. Marder, K. J. Perry, E. T. Sleva, C. Yakymyshyn, K. R. Stewart, and E. P. Boden, Proc. SPIE 1560, 302 (1991).
[CrossRef]

S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 626 (1989).
[CrossRef] [PubMed]

Möller, K. D.

K. D. Möller and W. G. Rothschild, Far-Infrared Spectroscopy (Wiley, New York, 1971).

Mols, R. F. X. A. M.

G. M. H. Knippels, R. F. X. A. M. Mols, A. F. G. van der Meer, D. Oepts, and P. W. van Amersfoort, Phys. Rev. Lett. 75, 1755 (1995)G. M. H. Knippels, “The short-pulse free-electron laser:?manipulation of the gain medium,” Ph.D. dissertation (Free University, Amsterdam, The Netherlands, 1996).
[CrossRef] [PubMed]

Oepts, D.

G. M. H. Knippels, R. F. X. A. M. Mols, A. F. G. van der Meer, D. Oepts, and P. W. van Amersfoort, Phys. Rev. Lett. 75, 1755 (1995)G. M. H. Knippels, “The short-pulse free-electron laser:?manipulation of the gain medium,” Ph.D. dissertation (Free University, Amsterdam, The Netherlands, 1996).
[CrossRef] [PubMed]

D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, Infrared Phys. Technol. 36, 297 (1995).
[CrossRef]

Perry, J. W.

J. W. Perry, S. R. Marder, K. J. Perry, E. T. Sleva, C. Yakymyshyn, K. R. Stewart, and E. P. Boden, Proc. SPIE 1560, 302 (1991).
[CrossRef]

S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 626 (1989).
[CrossRef] [PubMed]

Perry, K. J.

J. W. Perry, S. R. Marder, K. J. Perry, E. T. Sleva, C. Yakymyshyn, K. R. Stewart, and E. P. Boden, Proc. SPIE 1560, 302 (1991).
[CrossRef]

Richman, B. A.

Rothschild, W. G.

K. D. Möller and W. G. Rothschild, Far-Infrared Spectroscopy (Wiley, New York, 1971).

Schaefer, W. P.

S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 626 (1989).
[CrossRef] [PubMed]

Sleva, E. T.

J. W. Perry, S. R. Marder, K. J. Perry, E. T. Sleva, C. Yakymyshyn, K. R. Stewart, and E. P. Boden, Proc. SPIE 1560, 302 (1991).
[CrossRef]

Stewart, K. R.

J. W. Perry, S. R. Marder, K. J. Perry, E. T. Sleva, C. Yakymyshyn, K. R. Stewart, and E. P. Boden, Proc. SPIE 1560, 302 (1991).
[CrossRef]

Trebino, R.

van Amersfoort, P. W.

G. M. H. Knippels, R. F. X. A. M. Mols, A. F. G. van der Meer, D. Oepts, and P. W. van Amersfoort, Phys. Rev. Lett. 75, 1755 (1995)G. M. H. Knippels, “The short-pulse free-electron laser:?manipulation of the gain medium,” Ph.D. dissertation (Free University, Amsterdam, The Netherlands, 1996).
[CrossRef] [PubMed]

D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, Infrared Phys. Technol. 36, 297 (1995).
[CrossRef]

van der Meer, A. F. G.

D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, Infrared Phys. Technol. 36, 297 (1995).
[CrossRef]

G. M. H. Knippels, R. F. X. A. M. Mols, A. F. G. van der Meer, D. Oepts, and P. W. van Amersfoort, Phys. Rev. Lett. 75, 1755 (1995)G. M. H. Knippels, “The short-pulse free-electron laser:?manipulation of the gain medium,” Ph.D. dissertation (Free University, Amsterdam, The Netherlands, 1996).
[CrossRef] [PubMed]

Yakymyshyn, C.

J. W. Perry, S. R. Marder, K. J. Perry, E. T. Sleva, C. Yakymyshyn, K. R. Stewart, and E. P. Boden, Proc. SPIE 1560, 302 (1991).
[CrossRef]

Zhang, X.-C.

X.-C. Zhang and Y. Jin, in Perspectives in Optoelectronics, S. S. Jha, ed. (World Scientific, Singapore, 1994), pp. 81–138.

Infrared Phys. Technol. (1)

D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, Infrared Phys. Technol. 36, 297 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

G. M. H. Knippels, R. F. X. A. M. Mols, A. F. G. van der Meer, D. Oepts, and P. W. van Amersfoort, Phys. Rev. Lett. 75, 1755 (1995)G. M. H. Knippels, “The short-pulse free-electron laser:?manipulation of the gain medium,” Ph.D. dissertation (Free University, Amsterdam, The Netherlands, 1996).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. W. Perry, S. R. Marder, K. J. Perry, E. T. Sleva, C. Yakymyshyn, K. R. Stewart, and E. P. Boden, Proc. SPIE 1560, 302 (1991).
[CrossRef]

Science (1)

S. R. Marder, J. W. Perry, and W. P. Schaefer, Science 245, 626 (1989).
[CrossRef] [PubMed]

Other (6)

X.-C. Zhang and Y. Jin, in Perspectives in Optoelectronics, S. S. Jha, ed. (World Scientific, Singapore, 1994), pp. 81–138.

For the SHG of the fundamental wavelength between 30 and 36 µm we used a bandpass filter with a 23–35?µm transmittance window.

For the SHG of the fundamental wavelength between 47 and 55 µm we used a wire mesh filter, which is a long-wavelength pass filter with a cut-on wavelength of ?30 µm.

Anhydrous crystals of DAST were purchased from Molecular Opto-Electronics Corporation, Watervliet, N.Y.

A ZnSe filter (transparent for wavelengths below 20 µm) removed the fundamental wavelength between 30 and 36 µm, and the 23–35?µm transmittance bandpass filter7 removed the fundamental wavelength between 47 and 55 µm.

K. D. Möller and W. G. Rothschild, Far-Infrared Spectroscopy (Wiley, New York, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Intensity (arbitrary units) of the second-harmonic frequency generated in DAST as a function of the angle between the a axis of the crystal and the polarization of the optical electric field. Two beams, overlapping in time, are crossed in the crystal, and the detector is positioned between the two transmitted beams. Any second-harmonic radiation still present in the FELIX beam will not reach the detector, and only the second-harmonic radiation generated in the DAST crystal is detected, resulting in a background-free measurement.

Fig. 2
Fig. 2

Autocorrelation measurement of FELIX pulses at a fundamental wavelength of 53 µm in a crossed-beam setup. The plot shows the intensity (arbitrary units) of the second-harmonic frequency generated in DAST as a function of the delay between the two beams. The solid curve is a Gaussian fit through the data set. From this fit we obtained a pulse width of 1.50±0.08 ps (FWHM), corresponding to 8.5 electric-field cycles at 53 µm.

Fig. 3
Fig. 3

Autocorrelation traces of FELIX pulses at a fundamental wavelength of 33 µm. (a) Dashed curve, measured autocorrelation trace of a pulse that has propagated 3  m through air; solid curve, calculated autocorrelation trace of a Gaussian pulse including propagation effects. Inset, the calculated pulse shape corresponding to the autocorrelation trace. (b) Dashed curve, autocorrelation trace measured in a dry-nitrogen atmosphere; solid curve, a Gaussian fit.

Fig. 4
Fig. 4

Absorption and change in refractive-index spectra of water vapor in air used in modeling the propagation effects on a Gaussian pulse. (a) Seven absorption lines near 300 cm-1 are used in the model. These lines are (relative intensities are given in parentheses) 303.14 cm-1 (0.723), 302.99 cm-1 (1), 302.93 cm-1 (0.332), 301.85 cm-1 (0.240), 298.42 cm-1 (0.046), 290.75 cm-1 (0.04), and 289.43 cm-1 (0.425).11 (b) Because of the strong absorption, the refractive index various wildly in this spectral region. The refractive index's deviation from 1 is plotted here.

Metrics