Abstract

Dual-wavelength intersubband emission at 8 and 10 µm is reported in a three-level quantum-well system in which one electronic state is at the same time the lower level of the first optical transition and the upper level of the second. Results are presented for two different AlInAs/GaInAs quantum cascade structures featuring single-well active regions with two vertical transitions or double-well active regions with one diagonal and one vertical transition. Laser action has been achieved between the excited states of the single-well device and on the diagonal transition of the double-well structure. In the latter case the wavelength can be electric-field tuned by means of the Stark effect also above threshold.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
    [CrossRef] [PubMed]
  2. F. Capasso, J. Faist, C. Sirtori, and A. Y. Cho, Solid State Commun. 102, 231 (1997), and references therein.
    [CrossRef]
  3. C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, IEEE Photon. Technol. Lett. 9, 294 (1997).
    [CrossRef]
  4. M. Sigrist, ed., Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994).
  5. Y. Zhu, Opt. Commun. 107, 499 (1994).
    [CrossRef]
  6. C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, Phys. Rev. B 50, 8663 (1994).
    [CrossRef]
  7. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 538 (1995).
    [CrossRef]
  8. C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 4 (1995).
    [CrossRef]
  9. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
    [CrossRef]

1997 (3)

F. Capasso, J. Faist, C. Sirtori, and A. Y. Cho, Solid State Commun. 102, 231 (1997), and references therein.
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, IEEE Photon. Technol. Lett. 9, 294 (1997).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

1995 (2)

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 538 (1995).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 4 (1995).
[CrossRef]

1994 (3)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

Y. Zhu, Opt. Commun. 107, 499 (1994).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, Phys. Rev. B 50, 8663 (1994).
[CrossRef]

Baillargeon, J. N.

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, IEEE Photon. Technol. Lett. 9, 294 (1997).
[CrossRef]

Capasso, F.

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, IEEE Photon. Technol. Lett. 9, 294 (1997).
[CrossRef]

F. Capasso, J. Faist, C. Sirtori, and A. Y. Cho, Solid State Commun. 102, 231 (1997), and references therein.
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 538 (1995).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 4 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, Phys. Rev. B 50, 8663 (1994).
[CrossRef]

Cho, A. Y.

F. Capasso, J. Faist, C. Sirtori, and A. Y. Cho, Solid State Commun. 102, 231 (1997), and references therein.
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, IEEE Photon. Technol. Lett. 9, 294 (1997).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 538 (1995).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 4 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

Chu, S. N. G.

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, IEEE Photon. Technol. Lett. 9, 294 (1997).
[CrossRef]

Faist, J.

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, IEEE Photon. Technol. Lett. 9, 294 (1997).
[CrossRef]

F. Capasso, J. Faist, C. Sirtori, and A. Y. Cho, Solid State Commun. 102, 231 (1997), and references therein.
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 538 (1995).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 4 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, Phys. Rev. B 50, 8663 (1994).
[CrossRef]

Gmachl, C.

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, IEEE Photon. Technol. Lett. 9, 294 (1997).
[CrossRef]

Hutchinson, A. L.

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 538 (1995).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 4 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

Scandolo, S.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, Phys. Rev. B 50, 8663 (1994).
[CrossRef]

Sirtori, C.

F. Capasso, J. Faist, C. Sirtori, and A. Y. Cho, Solid State Commun. 102, 231 (1997), and references therein.
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, IEEE Photon. Technol. Lett. 9, 294 (1997).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 538 (1995).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 4 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, Phys. Rev. B 50, 8663 (1994).
[CrossRef]

Sivco, D. L.

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, IEEE Photon. Technol. Lett. 9, 294 (1997).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 538 (1995).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 4 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

Zhu, Y.

Y. Zhu, Opt. Commun. 107, 499 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 538 (1995).
[CrossRef]

C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Appl. Phys. Lett. 66, 4 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Quantum Electron. 33, 89 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, IEEE Photon. Technol. Lett. 9, 294 (1997).
[CrossRef]

Opt. Commun. (1)

Y. Zhu, Opt. Commun. 107, 499 (1994).
[CrossRef]

Phys. Rev. B (1)

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, Phys. Rev. B 50, 8663 (1994).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
[CrossRef] [PubMed]

Solid State Commun. (1)

F. Capasso, J. Faist, C. Sirtori, and A. Y. Cho, Solid State Commun. 102, 231 (1997), and references therein.
[CrossRef]

Other (1)

M. Sigrist, ed., Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Band diagram of the first QC structure at a bias field of 62  kV/cm, corresponding to resonant injection of electrons from the ground state |g of the graded superlattice into E3. For simplicity only two active regions with the connecting relaxation zone are sketched. The thicknesses in nanometers of one period are (left to right, starting from the injection barrier) 5.5/11/3.2/4.4/1.6/3.8/1.8/3.4/2/3.2/2.3/3.2̲/2.3/3/2.8/2.8, where the AlInAs barrier layers are in bold type and the underlined thicknesses represent the Si-doped layers n=1×1017 cm-3. The regions labeled miniband indicate the energy and spatial extension of the manifold of bandlike states; that labeled Minigap, the energy of vanishing density of states. The square moduli of the relevant wave functions are also shown. (b) The corresponding electroluminescence spectrum at several current densities.

Fig. 2
Fig. 2

Collected optical power from a single stripe facet versus drive current, and corresponding I–V characteristic under pulsed excitation (50-ns pulses, 4.7-kHz repetition rate) of a laser device with the double-vertical active region. Twenty-five periods have been cladded between 700-nm InGaAs n=6×1016 on the substrate side and 500-nm InGaAs n=6×1016/1200nm AlInAs n=2×1017/200nm AlInAs n=3×1017/700nm InGaAs n=7×1018 on the top side. Inset, low-resolution pulsed spectrum just above threshold.

Fig. 3
Fig. 3

(a) Band diagram of the dual-wavelength QC structure employing the diagonal-vertical scheme at a bias field of 72  kV/cm. The thicknesses in nanometers of one period are (left to right, starting from the injection barrier) 5.4/2.2/2.2/8.8/2.4/3.6/1.8/3.4/2/3/2.2/3̲/2.4/3/2.6/3, with same conventions as for Fig.  1 but doping n=1.6×1017 cm-3. (b) The corresponding electroluminescence spectrum at several current densities and a temperature of 10  K.

Fig. 4
Fig. 4

Measured emission energy (squares) as a function of bias voltage for the lasing transition E3E2 of the diagonal-vertical structure; threshold is reached at 9.3 V. Top inset, pulsed light-current and voltage-current characteristics as measured at 10  K for a laser stripe 2.25  mm long and 21 µm wide. The LI curve at 120  K is also shown. Bottom inset, a high-resolution pulsed spectrum slightly above threshold, showing the various lasing longitudinal modes. The mode separation 0.67 cm-1 is in good agreement with the calculated value 0.7 cm-1.

Metrics