Abstract

We have observed giant pulses from cw pumped, monolithic Nd:YVO4 microchip lasers, several hundred times the cw level, with pulse lengths less than 2  ns, which cannot be accounted for by conventional gain switching. These pulses occur as the second longitudinal mode starts to oscillate and can be described by the inclusion of gain-related effects in the formation of a stable cavity.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Szabo and L. E. Erickson, IEEE J. Quantum. Electron. 4, 692 (1968).
    [CrossRef]
  2. A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, J. Appl. Phys. 48, 4907 (1977).
    [CrossRef]
  3. G. K. Harkness and W. J. Firth, J. Mod. Opt. 39, 2023 (1992).
    [CrossRef]
  4. S. Longhi, J. Opt. Soc. Am. B 11, 1098 (1994).
    [CrossRef]
  5. F. Sanchez and A. Chardon, Opt. Commun. 136, 405 (1997).
    [CrossRef]
  6. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, Opt. Lett. 16, 1955 (1991).
    [CrossRef] [PubMed]
  7. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 958.
  8. J. J. Zayhowski, in Advanced Solid-State Lasers, H. P. Jenssen and G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 9–13.
  9. G. Friel, “Diode-pumped Nd:YLF lasers for high power operation,” Ph.D. dissertation (Southampton University, Southampton, UK, 1998).
  10. A. Maitland and M. H. Dunn, Laser Physics (North-Holland, Amsterdam, 1969), p. 20.
  11. A. K. Cousins, IEEE J. Quantum Electron. 28, 1057 (1992).
    [CrossRef]

1997 (1)

F. Sanchez and A. Chardon, Opt. Commun. 136, 405 (1997).
[CrossRef]

1994 (1)

1992 (2)

G. K. Harkness and W. J. Firth, J. Mod. Opt. 39, 2023 (1992).
[CrossRef]

A. K. Cousins, IEEE J. Quantum Electron. 28, 1057 (1992).
[CrossRef]

1991 (1)

1977 (1)

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, J. Appl. Phys. 48, 4907 (1977).
[CrossRef]

1968 (1)

A. Szabo and L. E. Erickson, IEEE J. Quantum. Electron. 4, 692 (1968).
[CrossRef]

Birnbaum, M.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, J. Appl. Phys. 48, 4907 (1977).
[CrossRef]

Chardon, A.

F. Sanchez and A. Chardon, Opt. Commun. 136, 405 (1997).
[CrossRef]

Cousins, A. K.

A. K. Cousins, IEEE J. Quantum Electron. 28, 1057 (1992).
[CrossRef]

Dunn, M. H.

A. Maitland and M. H. Dunn, Laser Physics (North-Holland, Amsterdam, 1969), p. 20.

Erickson, L. E.

A. Szabo and L. E. Erickson, IEEE J. Quantum. Electron. 4, 692 (1968).
[CrossRef]

Erler, J. W.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, J. Appl. Phys. 48, 4907 (1977).
[CrossRef]

Fincher, C. L.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, J. Appl. Phys. 48, 4907 (1977).
[CrossRef]

Firth, W. J.

G. K. Harkness and W. J. Firth, J. Mod. Opt. 39, 2023 (1992).
[CrossRef]

Friel, G.

G. Friel, “Diode-pumped Nd:YLF lasers for high power operation,” Ph.D. dissertation (Southampton University, Southampton, UK, 1998).

Harkness, G. K.

G. K. Harkness and W. J. Firth, J. Mod. Opt. 39, 2023 (1992).
[CrossRef]

Kobayashi, T.

Longhi, S.

Maitland, A.

A. Maitland and M. H. Dunn, Laser Physics (North-Holland, Amsterdam, 1969), p. 20.

Mukai, A.

Nozawa, Y.

Sanchez, F.

F. Sanchez and A. Chardon, Opt. Commun. 136, 405 (1997).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 958.

Szabo, A.

A. Szabo and L. E. Erickson, IEEE J. Quantum. Electron. 4, 692 (1968).
[CrossRef]

Taira, T.

Tucker, A. W.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, J. Appl. Phys. 48, 4907 (1977).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, in Advanced Solid-State Lasers, H. P. Jenssen and G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 9–13.

IEEE J. Quantum Electron. (1)

A. K. Cousins, IEEE J. Quantum Electron. 28, 1057 (1992).
[CrossRef]

IEEE J. Quantum. Electron. (1)

A. Szabo and L. E. Erickson, IEEE J. Quantum. Electron. 4, 692 (1968).
[CrossRef]

J. Appl. Phys. (1)

A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, J. Appl. Phys. 48, 4907 (1977).
[CrossRef]

J. Mod. Opt. (1)

G. K. Harkness and W. J. Firth, J. Mod. Opt. 39, 2023 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

F. Sanchez and A. Chardon, Opt. Commun. 136, 405 (1997).
[CrossRef]

Opt. Lett. (1)

Other (4)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 958.

J. J. Zayhowski, in Advanced Solid-State Lasers, H. P. Jenssen and G. Dubé, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 9–13.

G. Friel, “Diode-pumped Nd:YLF lasers for high power operation,” Ph.D. dissertation (Southampton University, Southampton, UK, 1998).

A. Maitland and M. H. Dunn, Laser Physics (North-Holland, Amsterdam, 1969), p. 20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured threshold pump powers (open shapes) and wavelengths (filled shapes) of both longitudinal modes as a function of temperature. The center of the gain bandwidth (FWHM 0.8  nm) is marked with a dashed curve.

Fig. 2
Fig. 2

Intensities of longitudinal modes (mode 1, squares; mode 2, triangles) as a function of pump power.

Fig. 3
Fig. 3

Intensity fluctuations of modes 1 and 2. The intensity of the giant pulse at t=0 in mode 2 is more than 100 times greater than the following relaxation oscillations. The inset shows a typical giant pulse.

Fig. 4
Fig. 4

Change in beam waist calculated from far-field beam measurements, as a function of pump power. The rapid increase in beam waist near 70  mW is associated with mode  2 starting to oscillate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δnr, z, ν2=cν2-ν02πν2Δνg2r, z, ν2,
Tr=Q/4πkl-2 lnwp/b+1-r/wp2,
Δlgainr=1+αlTrl1+dndTTrn0+Δnr, z-n0l,

Metrics