Abstract

We exploit the high second-order susceptibility of the organic crystal N-(4–nitrophenyl)-L-prolinol to accomplish, through a cascaded second-order process, wavelength conversion of a signal pulse (from 1.16 to 1.14 µm) under the action of a pump pulse (at 1.15 µm). In a 2.8-mm-thick crystal, wavelength conversion with unit gain was obtained with a pump peak intensity as low as 9 MW/cm2. At low intensities, in the limit of negligible conversion where the cascading effect can be described through an effective third-order susceptibility, we derive χeff32.4×10-17 m2/V2, which is 102 larger than the nonresonant χ3 of conjugated polymers or semiconductors.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Ostrovskij, JEPT Lett. 10, 281 (1967);R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzele, Opt. Lett. 17, 28 (1992).
    [CrossRef] [PubMed]
  2. G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
    [CrossRef]
  3. J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
    [CrossRef]
  4. I. Ledoux, J. Badan, J. Zyss, A. Migus, J. Etchepare, G. Grillon, and A. Antonetti, J. Opt. Soc. Am. B 4, 987 (1987).
    [CrossRef]
  5. I. Ledoux, C. Lepers, A. Perigaud, J. Badan, and J. Zyss, Opt. Commun. 80, 149 (1990).
    [CrossRef]
  6. Z. Wang, D. J. Hagan, E. W. Van Stryland, J. Zyss, P. Vidakovik, and W. Torruellas, J. Opt. Soc. Am. B 14, 76 (1997).
    [CrossRef]
  7. R. Adair, L. L. Chase, and S. A. Payne, Phys. Rev. B 39, 3327 (1989).
    [CrossRef]
  8. G. P. Banfi, V. Degiorgio, D. Fortusini, and H. M. Tan, Appl. Phys. Lett. 67, 13 (1995).
    [CrossRef]
  9. E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
    [CrossRef]
  10. H. Tan, G. P. Banfi, and A. Tomaselli, Appl. Phys. Lett. 63, 2472 (1993).
    [CrossRef]
  11. S. Nitti, H. M. Tan, G. P. Banfi, and V. Degiorgio, Opt. Commun. 106, 263 (1994).
    [CrossRef]
  12. B. Y. Shekunov, E. Shepherd, J. N. Sherwood, and G. S. Simpson, J. Phys. Chem. 99, 7130 (1995).
    [CrossRef]
  13. We define ?3 according to P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990).?To convert them to the present notation, multiply the values of ?3 given in Refs.??10 and 11 by 2/3.
  14. K. Gallo, G. Assanto, and G. I. Stegeman, Appl. Phys. Lett. 71, 1020 (1997).
    [CrossRef]

1997 (2)

1996 (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

1995 (2)

G. P. Banfi, V. Degiorgio, D. Fortusini, and H. M. Tan, Appl. Phys. Lett. 67, 13 (1995).
[CrossRef]

B. Y. Shekunov, E. Shepherd, J. N. Sherwood, and G. S. Simpson, J. Phys. Chem. 99, 7130 (1995).
[CrossRef]

1994 (1)

S. Nitti, H. M. Tan, G. P. Banfi, and V. Degiorgio, Opt. Commun. 106, 263 (1994).
[CrossRef]

1993 (1)

H. Tan, G. P. Banfi, and A. Tomaselli, Appl. Phys. Lett. 63, 2472 (1993).
[CrossRef]

1990 (1)

I. Ledoux, C. Lepers, A. Perigaud, J. Badan, and J. Zyss, Opt. Commun. 80, 149 (1990).
[CrossRef]

1989 (1)

R. Adair, L. L. Chase, and S. A. Payne, Phys. Rev. B 39, 3327 (1989).
[CrossRef]

1987 (1)

1984 (1)

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

1972 (1)

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
[CrossRef]

1967 (1)

L. A. Ostrovskij, JEPT Lett. 10, 281 (1967);R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzele, Opt. Lett. 17, 28 (1992).
[CrossRef] [PubMed]

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, Phys. Rev. B 39, 3327 (1989).
[CrossRef]

Antonetti, A.

Assanto, G.

K. Gallo, G. Assanto, and G. I. Stegeman, Appl. Phys. Lett. 71, 1020 (1997).
[CrossRef]

Badan, J.

Banfi, G. P.

G. P. Banfi, V. Degiorgio, D. Fortusini, and H. M. Tan, Appl. Phys. Lett. 67, 13 (1995).
[CrossRef]

S. Nitti, H. M. Tan, G. P. Banfi, and V. Degiorgio, Opt. Commun. 106, 263 (1994).
[CrossRef]

H. Tan, G. P. Banfi, and A. Tomaselli, Appl. Phys. Lett. 63, 2472 (1993).
[CrossRef]

Bloembergen, N.

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
[CrossRef]

Butcher, P. N.

We define ?3 according to P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990).?To convert them to the present notation, multiply the values of ?3 given in Refs.??10 and 11 by 2/3.

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, Phys. Rev. B 39, 3327 (1989).
[CrossRef]

Coquillay, M.

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

Cotter, D.

We define ?3 according to P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990).?To convert them to the present notation, multiply the values of ?3 given in Refs.??10 and 11 by 2/3.

Degiorgio, V.

G. P. Banfi, V. Degiorgio, D. Fortusini, and H. M. Tan, Appl. Phys. Lett. 67, 13 (1995).
[CrossRef]

S. Nitti, H. M. Tan, G. P. Banfi, and V. Degiorgio, Opt. Commun. 106, 263 (1994).
[CrossRef]

Etchepare, J.

Flytzanis, C.

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
[CrossRef]

Fortusini, D.

G. P. Banfi, V. Degiorgio, D. Fortusini, and H. M. Tan, Appl. Phys. Lett. 67, 13 (1995).
[CrossRef]

Gallo, K.

K. Gallo, G. Assanto, and G. I. Stegeman, Appl. Phys. Lett. 71, 1020 (1997).
[CrossRef]

Grillon, G.

Hagan, D. J.

Ledoux, I.

Lepers, C.

I. Ledoux, C. Lepers, A. Perigaud, J. Badan, and J. Zyss, Opt. Commun. 80, 149 (1990).
[CrossRef]

Migus, A.

Nicoud, J. F.

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

Nitti, S.

S. Nitti, H. M. Tan, G. P. Banfi, and V. Degiorgio, Opt. Commun. 106, 263 (1994).
[CrossRef]

Ostrovskij, L. A.

L. A. Ostrovskij, JEPT Lett. 10, 281 (1967);R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzele, Opt. Lett. 17, 28 (1992).
[CrossRef] [PubMed]

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, Phys. Rev. B 39, 3327 (1989).
[CrossRef]

Perigaud, A.

I. Ledoux, C. Lepers, A. Perigaud, J. Badan, and J. Zyss, Opt. Commun. 80, 149 (1990).
[CrossRef]

Shekunov, B. Y.

B. Y. Shekunov, E. Shepherd, J. N. Sherwood, and G. S. Simpson, J. Phys. Chem. 99, 7130 (1995).
[CrossRef]

Shepherd, E.

B. Y. Shekunov, E. Shepherd, J. N. Sherwood, and G. S. Simpson, J. Phys. Chem. 99, 7130 (1995).
[CrossRef]

Sherwood, J. N.

B. Y. Shekunov, E. Shepherd, J. N. Sherwood, and G. S. Simpson, J. Phys. Chem. 99, 7130 (1995).
[CrossRef]

Simpson, G. S.

B. Y. Shekunov, E. Shepherd, J. N. Sherwood, and G. S. Simpson, J. Phys. Chem. 99, 7130 (1995).
[CrossRef]

Stegeman, G. I.

K. Gallo, G. Assanto, and G. I. Stegeman, Appl. Phys. Lett. 71, 1020 (1997).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Tan, H.

H. Tan, G. P. Banfi, and A. Tomaselli, Appl. Phys. Lett. 63, 2472 (1993).
[CrossRef]

Tan, H. M.

G. P. Banfi, V. Degiorgio, D. Fortusini, and H. M. Tan, Appl. Phys. Lett. 67, 13 (1995).
[CrossRef]

S. Nitti, H. M. Tan, G. P. Banfi, and V. Degiorgio, Opt. Commun. 106, 263 (1994).
[CrossRef]

Tomaselli, A.

H. Tan, G. P. Banfi, and A. Tomaselli, Appl. Phys. Lett. 63, 2472 (1993).
[CrossRef]

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Torruellas, W.

Van Stryland, E. W.

Vidakovik, P.

Wang, Z.

Yablonovitch, E.

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
[CrossRef]

Zyss, J.

Appl. Phys. Lett. (3)

G. P. Banfi, V. Degiorgio, D. Fortusini, and H. M. Tan, Appl. Phys. Lett. 67, 13 (1995).
[CrossRef]

H. Tan, G. P. Banfi, and A. Tomaselli, Appl. Phys. Lett. 63, 2472 (1993).
[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, Appl. Phys. Lett. 71, 1020 (1997).
[CrossRef]

J. Chem. Phys. (1)

J. Zyss, J. F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

B. Y. Shekunov, E. Shepherd, J. N. Sherwood, and G. S. Simpson, J. Phys. Chem. 99, 7130 (1995).
[CrossRef]

JEPT Lett. (1)

L. A. Ostrovskij, JEPT Lett. 10, 281 (1967);R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzele, Opt. Lett. 17, 28 (1992).
[CrossRef] [PubMed]

Opt. Commun. (2)

S. Nitti, H. M. Tan, G. P. Banfi, and V. Degiorgio, Opt. Commun. 106, 263 (1994).
[CrossRef]

I. Ledoux, C. Lepers, A. Perigaud, J. Badan, and J. Zyss, Opt. Commun. 80, 149 (1990).
[CrossRef]

Opt. Quantum Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Phys. Rev. B (1)

R. Adair, L. L. Chase, and S. A. Payne, Phys. Rev. B 39, 3327 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

E. Yablonovitch, C. Flytzanis, and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).
[CrossRef]

Other (1)

We define ?3 according to P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, 1990).?To convert them to the present notation, multiply the values of ?3 given in Refs.??10 and 11 by 2/3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Normalized energy of the frequency-shifted signal versus θ in the small conversion regime, measured with a 2.8-mm NPP crystal. The measurements were performed at Ip0.3 MW/cm2, Is30 kW/cm2. Filled circles, experimental points; solid curve, the θ dependence calculated from Eq.  ( 1); horizontal dashed line, ξ measured with a 7-mm BBO crystal at phase matching Δk=0.

Fig. 2
Fig. 2

Conversion efficiency η (upper plot) and signal amplification ρ (lower plot) versus peak pump intensity in the NPP frequency-mixing experiment. The experimental data (open circles) were obtained at Is=0.5±0.1 MW/cm2. Inset, exploded view of the low-intensity regime. Solid curves, calculations performed with a, Is=0.45 MW/cm2; b, 0.55 MW/cm2. Note that, with no saturation of the second step of cascading, the two curves would coincide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

χeff3=4ω3cndeff2L21-sincΔkLΔkL+i sinc2ΔkL/2,

Metrics