Abstract

Two frequency components of an IR laser beam near 980  nm are simultaneously coupled into two adjacent longitudinal modes of a passive ring resonator. A potassium niobate crystal inside the resonator converts the circulating IR light into coherent blue radiation. The total conversion efficiency is enhanced by a factor of 1.4 compared with that of conventional single-mode intracavity second-harmonic generation with the same circulating total power, and we obtain a total output power of 560  mW from 780-mW IR light incident upon the cavity. The spectra of the generated blue radiation and the circulating IR light contain a number of equidistant frequency components that are due to consecutive sum- and difference-frequency mixing.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
    [CrossRef]
  2. L. Goldberg, D. Mehuys, M. R. Surette, and D. C. Hall, IEEE J. Quantum Electron. 29, 2028 (1993).
    [CrossRef]
  3. E. S. Polzik and H. J. Kimble, Opt. Lett. 16, 1400 (1991).
    [CrossRef] [PubMed]
  4. C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, and T. W. Hänsch, Opt. Lett. 20, 297 (1995).
    [CrossRef] [PubMed]
  5. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  6. T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
    [CrossRef]
  7. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  8. J. C. Baumert, J. Hoffnagle, and P. Günter, Proc. SPIE 492, 374 (1985).
    [CrossRef]
  9. C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
    [CrossRef]

1995

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, and T. W. Hänsch, Opt. Lett. 20, 297 (1995).
[CrossRef] [PubMed]

1993

L. Goldberg, D. Mehuys, M. R. Surette, and D. C. Hall, IEEE J. Quantum Electron. 29, 2028 (1993).
[CrossRef]

1991

1989

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

1985

J. C. Baumert, J. Hoffnagle, and P. Günter, Proc. SPIE 492, 374 (1985).
[CrossRef]

1980

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

1968

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Baumert, J. C.

J. C. Baumert, J. Hoffnagle, and P. Günter, Proc. SPIE 492, 374 (1985).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

Couillaud, B.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Goldberg, L.

L. Goldberg, D. Mehuys, M. R. Surette, and D. C. Hall, IEEE J. Quantum Electron. 29, 2028 (1993).
[CrossRef]

Günter, P.

J. C. Baumert, J. Hoffnagle, and P. Günter, Proc. SPIE 492, 374 (1985).
[CrossRef]

Hall, D. C.

L. Goldberg, D. Mehuys, M. R. Surette, and D. C. Hall, IEEE J. Quantum Electron. 29, 2028 (1993).
[CrossRef]

Hänsch, T. W.

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, and T. W. Hänsch, Opt. Lett. 20, 297 (1995).
[CrossRef] [PubMed]

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Hemmerich, A.

C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, and T. W. Hänsch, Opt. Lett. 20, 297 (1995).
[CrossRef] [PubMed]

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

Hoffnagle, J.

J. C. Baumert, J. Hoffnagle, and P. Günter, Proc. SPIE 492, 374 (1985).
[CrossRef]

Kallenbach, R.

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

Kimble, H. J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Mehuys, D.

L. Goldberg, D. Mehuys, M. R. Surette, and D. C. Hall, IEEE J. Quantum Electron. 29, 2028 (1993).
[CrossRef]

Polzik, E. S.

Ricci, L.

Sandberg, J.

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

Surette, M. R.

L. Goldberg, D. Mehuys, M. R. Surette, and D. C. Hall, IEEE J. Quantum Electron. 29, 2028 (1993).
[CrossRef]

Vuletic, V.

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, and T. W. Hänsch, Opt. Lett. 20, 297 (1995).
[CrossRef] [PubMed]

Zimmermann, C.

C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, and T. W. Hänsch, Opt. Lett. 20, 297 (1995).
[CrossRef] [PubMed]

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

Appl. Phys. Lett.

C. Zimmermann, V. Vuletic, A. Hemmerich, and T. W. Hänsch, Appl. Phys. Lett. 66, 2318 (1995).
[CrossRef]

IEEE J. Quantum Electron.

L. Goldberg, D. Mehuys, M. R. Surette, and D. C. Hall, IEEE J. Quantum Electron. 29, 2028 (1993).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Opt. Commun.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

C. Zimmermann, R. Kallenbach, T. W. Hänsch, and J. Sandberg, Opt. Commun. 71, 229 (1989).
[CrossRef]

Opt. Lett.

Proc. SPIE

J. C. Baumert, J. Hoffnagle, and P. Günter, Proc. SPIE 492, 374 (1985).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

① Total blue output power versus fundamental power circulating inside the resonator. ②, ③, Power of the sum component and in one of the harmonic components, respectively. Solid curves, theoretical expectations according to a conversion coefficient η of 2.0%/W.

Fig. 2
Fig. 2

Spectrum of the generated blue light as recorded with an optical spectrum analyzer with a free spectral range of 1.5  GHz.

Fig. 3
Fig. 3

Power ratio between one of the second-harmonic components and the sum component in the spectrum of the generated blue light. The solid curve indicates the expected ratio if only χ2 processes are taken into account. For the dashed curve see the text.

Fig. 4
Fig. 4

Spectrum of the fundamental light circulating inside the resonator. In addition to the two injected fundamental modes, two sidebands appear owing to difference-frequency mixing between one fundamental mode and one of the two blue harmonic components.

Fig. 5
Fig. 5

Power of (a) the first blue sideband and (b) the fundamental sideband. The blue sideband power can be described by Pbs=4ηPfsPf. A fit to the experimental data yields η=1.5%/W, which is somewhat below the values derived in Fig.  1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dashdz=ωncχ2af2expiΔkz1+i2z/b1-2afsaf, dasumdz=2ωncχ2af2expiΔkz1+i2z/b1+afsaf2.

Metrics