Abstract

A quasi-discrete Hankel transform (QDHT) is presented as a new and efficient framework for numerical evaluation of the zero-order Hankel transform. A discrete form of Parseval's theorem is obtained for the first time to the authors' knowledge, and the transform matrix is discussed. It is shown that the S factor, defined as the products of a truncated radius, is critical to building the QDHT.

© 1998 Optical Society of america

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription