Abstract

Recent developments in high-finesse cavities now make broadly tunable, continuous-wave Raman lasers possible. The design and preliminary characterization of what is to the authors’ knowledge the first continuous-wave Raman laser in H2 are presented. The threshold is currently at 2  mW of pump, making diode laser pumping possible. The maximum photon conversion efficiency observed was 35% at 7.6  mW of pump power.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).
  2. M. Poelker and P. Kumar, Opt. Lett. 17, 399 (1992).
    [CrossRef] [PubMed]
  3. G. Grynberg, E. Giacobino, and F. Biraben, Opt. Commun. 36, 403 (1981).
    [CrossRef]
  4. S. N. Jabr, Opt. Lett. 12, 690 (1987).
    [CrossRef] [PubMed]
  5. P. Franke, A. Feirisch, F. Riehle, K. Zhao, and J. Helmcke, Appl. Opt. 28, 3702 (1989).
    [CrossRef] [PubMed]
  6. X. W. Xia, W. J. Sandle, R. J. Ballagh, and D. M. Warrington, Opt. Commun. 96, 99 (1993).
    [CrossRef]
  7. P. Persephonis, S. V. Cherikov, and J. R. Taylor, Electron. Lett. 32, 1486 (1996).
    [CrossRef]
  8. K. S. Repasky, L. E. Watson, and J. L. Carlsten, Appl. Opt. 34, 2615 (1995).
    [CrossRef] [PubMed]
  9. K. S. Repasky, J. G. Wessel, and J. L. Carlsten, Appl. Opt. 35, 609 (1996).
    [CrossRef] [PubMed]
  10. Recently cw optical parametric oscillators were also shown to produce laser light in this part of the spectrum.11,12
  11. M. Scheidt, B. Beier, K.-J. Boller, and R. Wallenstein, Opt. Lett. 22, 1287 (1997).
    [CrossRef]
  12. W. R. Boseburg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, Opt. Lett. 21, 1336 (1996).
    [CrossRef]
  13. P. Rabinowitz, A. Stein, R. Brickman, and A. Kaldor, Opt. Lett. 3, 147 (1978).
    [CrossRef] [PubMed]
  14. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986).
    [CrossRef]
  15. The intensity buildup inside a high-finesse cavity can be found from the standard electric field summation used in standard optics texts. See, for example, E. Hecht and A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), p. 305.
  16. The Lightwave Electronics laser used in this experiment has 200??mW of single-frequency, single-mode optical power and a linewidth of <10 kHz.
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  18. The high-reflectivity mirrors were purchased from Research Electro-Optics, Boulder, Colo. These mirrors were exposed to pump oil and were cleaned, resulting in an absorption of 78 parts in 106. With new mirrors with absorption of 15 parts in 106 the threshold will be lower and the output higher.

1997 (1)

1996 (3)

1995 (1)

1993 (1)

X. W. Xia, W. J. Sandle, R. J. Ballagh, and D. M. Warrington, Opt. Commun. 96, 99 (1993).
[CrossRef]

1992 (1)

1989 (1)

1987 (1)

1986 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1981 (2)

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

G. Grynberg, E. Giacobino, and F. Biraben, Opt. Commun. 36, 403 (1981).
[CrossRef]

1978 (1)

Abdul-Halim, I.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Alexander, J. I.

Ballagh, R. J.

X. W. Xia, W. J. Sandle, R. J. Ballagh, and D. M. Warrington, Opt. Commun. 96, 99 (1993).
[CrossRef]

Beier, B.

Biraben, F.

G. Grynberg, E. Giacobino, and F. Biraben, Opt. Commun. 36, 403 (1981).
[CrossRef]

Bischel, W. K.

Boller, K.-J.

Boseburg, W. R.

Brickman, R.

Byer, R. L.

Carlsten, J. L.

Cherikov, S. V.

P. Persephonis, S. V. Cherikov, and J. R. Taylor, Electron. Lett. 32, 1486 (1996).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Drobshoff, A.

Dyer, M. J.

Feirisch, A.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Franke, P.

Giacobino, E.

G. Grynberg, E. Giacobino, and F. Biraben, Opt. Commun. 36, 403 (1981).
[CrossRef]

Grynberg, G.

G. Grynberg, E. Giacobino, and F. Biraben, Opt. Commun. 36, 403 (1981).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hecht, E.

The intensity buildup inside a high-finesse cavity can be found from the standard electric field summation used in standard optics texts. See, for example, E. Hecht and A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), p. 305.

Helmcke, J.

Heppner, J.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Huber, U.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Jabr, S. N.

Kaldor, A.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kumar, P.

Max, R.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Myers, L. E.

Ni, Y.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Persephonis, P.

P. Persephonis, S. V. Cherikov, and J. R. Taylor, Electron. Lett. 32, 1486 (1996).
[CrossRef]

Poelker, M.

Rabinowitz, P.

Repasky, K. S.

Riehle, F.

Sandle, W. J.

X. W. Xia, W. J. Sandle, R. J. Ballagh, and D. M. Warrington, Opt. Commun. 96, 99 (1993).
[CrossRef]

Scheidt, M.

Stein, A.

Taylor, J. R.

P. Persephonis, S. V. Cherikov, and J. R. Taylor, Electron. Lett. 32, 1486 (1996).
[CrossRef]

Wallenstein, R.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Warrington, D. M.

X. W. Xia, W. J. Sandle, R. J. Ballagh, and D. M. Warrington, Opt. Commun. 96, 99 (1993).
[CrossRef]

Watson, L. E.

Weiss, C. O.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Wessel, J. G.

Willenberg, G.

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

Xia, X. W.

X. W. Xia, W. J. Sandle, R. J. Ballagh, and D. M. Warrington, Opt. Commun. 96, 99 (1993).
[CrossRef]

Zajac, A.

The intensity buildup inside a high-finesse cavity can be found from the standard electric field summation used in standard optics texts. See, for example, E. Hecht and A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), p. 305.

Zhao, K.

Appl. Opt. (3)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Electron. Lett. (1)

P. Persephonis, S. V. Cherikov, and J. R. Taylor, Electron. Lett. 32, 1486 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Max, U. Huber, I. Abdul-Halim, J. Heppner, Y. Ni, G. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. QE-17, 1123 (1981).

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

G. Grynberg, E. Giacobino, and F. Biraben, Opt. Commun. 36, 403 (1981).
[CrossRef]

X. W. Xia, W. J. Sandle, R. J. Ballagh, and D. M. Warrington, Opt. Commun. 96, 99 (1993).
[CrossRef]

Opt. Lett. (5)

Other (4)

The high-reflectivity mirrors were purchased from Research Electro-Optics, Boulder, Colo. These mirrors were exposed to pump oil and were cleaned, resulting in an absorption of 78 parts in 106. With new mirrors with absorption of 15 parts in 106 the threshold will be lower and the output higher.

Recently cw optical parametric oscillators were also shown to produce laser light in this part of the spectrum.11,12

The intensity buildup inside a high-finesse cavity can be found from the standard electric field summation used in standard optics texts. See, for example, E. Hecht and A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), p. 305.

The Lightwave Electronics laser used in this experiment has 200??mW of single-frequency, single-mode optical power and a linewidth of <10 kHz.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Energy levels in H2 (to scale) used for the cw Raman laser. Note that the virtual level (dashed line) is associated with the first electronic excited level (labeled e). Therefore this nonresonant Raman laser will be broadly tunable without large changes in the gain.

Fig. 2
Fig. 2

Experimental diagram for the cw Raman laser in H2: NB, narrow-band.

Fig. 3
Fig. 3

Stokes output power of the cw Raman laser versus the pump input power. The threshold occurs near 2  mW, and the maximum photon conversion efficiency is 35% at an input pump power of 7.6  mW.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G=4αλp+λstan-1l/bPp,
α=Dνp-νvνi2-νp22=Dνsνi2-νp22,
G=GTP1-Rp2,
G=-lnRs,

Metrics