Abstract

We present the results of a novel experimental and numerical investigation aimed at minimizing thermal loading effects in room-temperature Cr<sup>4+</sup>: forsterite lasers. In the model we numerically calculated the incident pump power required for oscillation threshold to be attained by taking into account pump absorption saturation, pump-induced thermal gradients inside the crystal, and the temperature dependence of the upper-state fluorescence lifetime. Excellent agreement was obtained between model predictions and experimental threshold data. We then used the model to calculate the optimum absorption coefficient that minimizes the incident threshold pump power. At a crystal boundary temperature of 15 °C the optimum value of the absorption coefficient was numerically determined to be 0.64 cm<sup>-1</sup> . Such optimization studies, which are readily applicable to other laser systems, should make a significant contribution to the improvement of the power performance of Cr<sup>4+</sup>: forsterite lasers at room temperature.

© 1998 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription