Abstract

A single-longitudinal-mode erbium-doped fiber laser with a passive multiple-ring cavity (MRC) is proposed for the first time to the authors’ knowledge. The laser is fundamentally structured by insertion of three different short ring cavities, which serve as mode filters, into the main cavity. When it is combined with a mode-restricting intracavity fiber Bragg grating, the MRC resonator ensures single-longitundinal-mode laser oscillation. The laser can successfully suppress side-mode frequencies of as much as 1  GHz and provide an output power of 23  mW with a side-mode suppression ratio of 51  dB at 1533  nm. The short-term linewidth of the laser output measured is 2 kHz. The ability of this fiber laser to act as an AM transmitter source is also demonstrated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Park, J. W. Dawon, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2639 (1991).
    [CrossRef]
  2. J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
    [CrossRef]
  3. G. A. Ball, W. W. Morey, and W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
    [CrossRef]
  4. V. Mizrahi, D. J. Digiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, and J.-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
    [CrossRef]
  5. J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 14, 104 (1996).
    [CrossRef]
  6. C.-X. Shi, Opt. Commun. 125, 349 (1996).
    [CrossRef]
  7. K. Hotate and T. Ito, Electron. Lett. 32, 923 (1996).
    [CrossRef]
  8. Y. H. Ja, Appl. Opt. 29, 3517 (1990).
    [CrossRef] [PubMed]
  9. J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 12, 1256 (1994).
    [CrossRef]

1996 (3)

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 14, 104 (1996).
[CrossRef]

C.-X. Shi, Opt. Commun. 125, 349 (1996).
[CrossRef]

K. Hotate and T. Ito, Electron. Lett. 32, 923 (1996).
[CrossRef]

1994 (1)

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 12, 1256 (1994).
[CrossRef]

1993 (1)

V. Mizrahi, D. J. Digiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, and J.-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

1991 (3)

N. Park, J. W. Dawon, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2639 (1991).
[CrossRef]

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

G. A. Ball, W. W. Morey, and W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
[CrossRef]

1990 (1)

Atkins, R. M.

V. Mizrahi, D. J. Digiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, and J.-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

Ball, G. A.

G. A. Ball, W. W. Morey, and W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
[CrossRef]

Clements, W. R. L.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 14, 104 (1996).
[CrossRef]

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 12, 1256 (1994).
[CrossRef]

Dawon, J. W.

N. Park, J. W. Dawon, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2639 (1991).
[CrossRef]

Delavaux, J.-M. P.

V. Mizrahi, D. J. Digiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, and J.-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

Digiovanni, D. J.

V. Mizrahi, D. J. Digiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, and J.-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

Glenn, W. H.

G. A. Ball, W. W. Morey, and W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
[CrossRef]

Grubb, S. G.

V. Mizrahi, D. J. Digiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, and J.-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

Harvey, G. T.

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

Hotate, K.

K. Hotate and T. Ito, Electron. Lett. 32, 923 (1996).
[CrossRef]

Ito, T.

K. Hotate and T. Ito, Electron. Lett. 32, 923 (1996).
[CrossRef]

Ja, Y. H.

Jopson, R. M.

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

Koren, U.

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

Lit, J. W. Y.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 14, 104 (1996).
[CrossRef]

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 12, 1256 (1994).
[CrossRef]

Miller, C.

N. Park, J. W. Dawon, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2639 (1991).
[CrossRef]

Mizrahi, V.

V. Mizrahi, D. J. Digiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, and J.-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

Morey, W. W.

G. A. Ball, W. W. Morey, and W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
[CrossRef]

Park, N.

N. Park, J. W. Dawon, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2639 (1991).
[CrossRef]

Park, Y.-K.

V. Mizrahi, D. J. Digiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, and J.-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

Piccirilli, A.

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

Presby, H. M.

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

Schinn, G. W.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 14, 104 (1996).
[CrossRef]

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 12, 1256 (1994).
[CrossRef]

Shi, C.-X.

C.-X. Shi, Opt. Commun. 125, 349 (1996).
[CrossRef]

Stone, J.

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

Stulz, L. W.

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

Sulhoff, J. W.

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

Sun, Y.

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

Vahala, K. J.

N. Park, J. W. Dawon, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2639 (1991).
[CrossRef]

Yue, C.-Y.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 14, 104 (1996).
[CrossRef]

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 12, 1256 (1994).
[CrossRef]

Zhang, J.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 14, 104 (1996).
[CrossRef]

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 12, 1256 (1994).
[CrossRef]

Zyskind, J. L.

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Park, J. W. Dawon, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2639 (1991).
[CrossRef]

Electron. Lett. (2)

J. L. Zyskind, J. W. Sulhoff, Y. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, and R. M. Jopson, Electron. Lett. 27, 2148 (1991).
[CrossRef]

K. Hotate and T. Ito, Electron. Lett. 32, 923 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. A. Ball, W. W. Morey, and W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
[CrossRef]

J. Lightwave Technol. (3)

V. Mizrahi, D. J. Digiovanni, R. M. Atkins, S. G. Grubb, Y.-K. Park, and J.-M. P. Delavaux, J. Lightwave Technol. 11, 2021 (1993).
[CrossRef]

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 14, 104 (1996).
[CrossRef]

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, J. Lightwave Technol. 12, 1256 (1994).
[CrossRef]

Opt. Commun. (1)

C.-X. Shi, Opt. Commun. 125, 349 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Single-mode EDF ring laser MRC: proposed configuration and experimental setup.

Fig. 2
Fig. 2

Detected homodyne frequency spectrum of the fiber laser (a) without MRC operation, (b) with one subring cavity with a FSR of 35.2  MHz added, (c) with two subring cavities with FSR’s of 35.2 and 37.2  MHz added, and (d) with all three subring cavities with FSR’s of 35.2, 37.2, and 56.8  MHz added.

Fig. 3
Fig. 3

Characteristics of the MRC-based fiber laser: (a) the laser output spectrum measured by an optical spectrum analyzer with 0.2-nm resolution and (b) the linewidth (single-mode spectrum) measured by a delayed self-heterodyne method.

Fig. 4
Fig. 4

Performances of the EFL-based AM transmitter without MRC operation of (a) the detected full-channel spectrum and (b) the measured CNR of channel 78 (547.25  MHz) and performance with MRC operation of (c) the detected full-channel spectrum, and (d) the measured CNR of channel 78.

Metrics