Abstract

We describe both theoretical and experimental results obtained in an investigation of a new technique for increasing the dynamic range of 1.65-µm optical time domain–reflectometry (OTDR) systems. The technique utilizes delayed Raman amplification of a 1.65-µm signal pulse by a 1.53-µm pump pulse. Amplification occurs when the two pulses overlap, and this position is determined by the initial delay between the pulses and the fiber dispersion. An increase in dynamic range of 17.5  dB has been observed, and the OTDR backscattered Rayleigh signal was detected up to 100  km. No significant noise penalty is introduced as a result of the directionality of the Raman gain.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sato, T. Horiguchi, Y. Koyamada, and I. Sanakawa, IEEE Photon. Technol. Lett. 4, 923 (1992).
    [CrossRef]
  2. Y. R. Shen and N. Bloembergen, Phys. Rev. 137, 1787 (1965).
    [CrossRef]
  3. C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
    [CrossRef]
  4. G. P. Lees, A. P. Leach, A. H. Hartog, and T. P. Newson, Electron. Lett. 32, 1809 (1996).
    [CrossRef]

1996 (1)

G. P. Lees, A. P. Leach, A. H. Hartog, and T. P. Newson, Electron. Lett. 32, 1809 (1996).
[CrossRef]

1992 (1)

T. Sato, T. Horiguchi, Y. Koyamada, and I. Sanakawa, IEEE Photon. Technol. Lett. 4, 923 (1992).
[CrossRef]

1977 (1)

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

1965 (1)

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, 1787 (1965).
[CrossRef]

Bloembergen, N.

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, 1787 (1965).
[CrossRef]

Cohen, L. G.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

French, W. G.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

Hartog, A. H.

G. P. Lees, A. P. Leach, A. H. Hartog, and T. P. Newson, Electron. Lett. 32, 1809 (1996).
[CrossRef]

Horiguchi, T.

T. Sato, T. Horiguchi, Y. Koyamada, and I. Sanakawa, IEEE Photon. Technol. Lett. 4, 923 (1992).
[CrossRef]

Koyamada, Y.

T. Sato, T. Horiguchi, Y. Koyamada, and I. Sanakawa, IEEE Photon. Technol. Lett. 4, 923 (1992).
[CrossRef]

Leach, A. P.

G. P. Lees, A. P. Leach, A. H. Hartog, and T. P. Newson, Electron. Lett. 32, 1809 (1996).
[CrossRef]

Lees, G. P.

G. P. Lees, A. P. Leach, A. H. Hartog, and T. P. Newson, Electron. Lett. 32, 1809 (1996).
[CrossRef]

Lin, C.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

Newson, T. P.

G. P. Lees, A. P. Leach, A. H. Hartog, and T. P. Newson, Electron. Lett. 32, 1809 (1996).
[CrossRef]

Sanakawa, I.

T. Sato, T. Horiguchi, Y. Koyamada, and I. Sanakawa, IEEE Photon. Technol. Lett. 4, 923 (1992).
[CrossRef]

Sato, T.

T. Sato, T. Horiguchi, Y. Koyamada, and I. Sanakawa, IEEE Photon. Technol. Lett. 4, 923 (1992).
[CrossRef]

Shen, Y. R.

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, 1787 (1965).
[CrossRef]

Stolen, R. H.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

Tasker, G. W.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

Electron. Lett. (1)

G. P. Lees, A. P. Leach, A. H. Hartog, and T. P. Newson, Electron. Lett. 32, 1809 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Sato, T. Horiguchi, Y. Koyamada, and I. Sanakawa, IEEE Photon. Technol. Lett. 4, 923 (1992).
[CrossRef]

Opt. Commun. (1)

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

Phys. Rev. (1)

Y. R. Shen and N. Bloembergen, Phys. Rev. 137, 1787 (1965).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for the Raman amplification experiment.

Fig. 2
Fig. 2

(a) Theoretical and (b) experimental results for the Raman amplification process.

Fig. 3
Fig. 3

OTDR traces of various pump power levels from 1 to 5  W.

Fig. 4
Fig. 4

Net gain achieved for the OTDR system for pump power levels from 1 to 5  W.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dPs/dz=gR/AsPsPp-αsPs,
dPp/dz=-gR/Apωp/ωsPsPp-αpPp,
gR=1.064/λp9.2×10-14=6.4×10-14 m/W.

Metrics