Abstract

We derive an integral solution for the local heating of a linearly absorbing, uniform medium exposed to strongly focused light. Numerical results for local heating under typical multiphoton microscopy and optical trapping conditions are presented for various aperture angles. In contrast with common Gaussian beam approximations, our model employs the focal-intensity distribution as described by the point spread function of the lens. In this way, the model also accounts for axial heat transportation, which results in a lower prediction for the temperature increase. For an aperture of 1.2 (water immersion), irradiation with 100  mW of 850-nm light for 1  s increases the local temperature of water by 0.2  K. Heating of water by linear absorption can be ruled out as a limiting factor in standard multiphoton-excitation microscopy.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription