Abstract

We derive an integral solution for the local heating of a linearly absorbing, uniform medium exposed to strongly focused light. Numerical results for local heating under typical multiphoton microscopy and optical trapping conditions are presented for various aperture angles. In contrast with common Gaussian beam approximations, our model employs the focal-intensity distribution as described by the point spread function of the lens. In this way, the model also accounts for axial heat transportation, which results in a lower prediction for the temperature increase. For an aperture of 1.2 (water immersion), irradiation with 100  mW of 850-nm light for 1  s increases the local temperature of water by 0.2  K. Heating of water by linear absorption can be ruled out as a limiting factor in standard multiphoton-excitation microscopy.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
    [CrossRef]
  2. W. Denk, D. W. Piston, and W. W. Webb, in Two-Photon Molecular Excitation in Laser Scanning Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), p. 445–458.
  3. P. E. Hänninen, E. Soini, and S. W. Hell, J. Microsc. 176, 222 (1994).
    [CrossRef]
  4. A. Sennaroglu, J. Opt. Soc. Am. B 14, 356 (1997).
    [CrossRef]
  5. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, Biophys. J. 68, 2137 (1995).
    [CrossRef] [PubMed]
  6. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996), p. 277.
  7. S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
    [CrossRef]

1997 (1)

1995 (1)

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, Biophys. J. 68, 2137 (1995).
[CrossRef] [PubMed]

1994 (2)

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef]

P. E. Hänninen, E. Soini, and S. W. Hell, J. Microsc. 176, 222 (1994).
[CrossRef]

1993 (1)

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

Berns, M. W.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, Biophys. J. 68, 2137 (1995).
[CrossRef] [PubMed]

Block, S. M.

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef]

Chapman, C. F.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, Biophys. J. 68, 2137 (1995).
[CrossRef] [PubMed]

Cheng, D. K.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, Biophys. J. 68, 2137 (1995).
[CrossRef] [PubMed]

Cremer, C.

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

Denk, W.

W. Denk, D. W. Piston, and W. W. Webb, in Two-Photon Molecular Excitation in Laser Scanning Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), p. 445–458.

Gu, M.

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996), p. 277.

Hänninen, P. E.

P. E. Hänninen, E. Soini, and S. W. Hell, J. Microsc. 176, 222 (1994).
[CrossRef]

Hell, S. W.

P. E. Hänninen, E. Soini, and S. W. Hell, J. Microsc. 176, 222 (1994).
[CrossRef]

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

Liu, Y.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, Biophys. J. 68, 2137 (1995).
[CrossRef] [PubMed]

Piston, D. W.

W. Denk, D. W. Piston, and W. W. Webb, in Two-Photon Molecular Excitation in Laser Scanning Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), p. 445–458.

Reiner, G.

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

Sennaroglu, A.

Soini, E.

P. E. Hänninen, E. Soini, and S. W. Hell, J. Microsc. 176, 222 (1994).
[CrossRef]

Sonek, G. J.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, Biophys. J. 68, 2137 (1995).
[CrossRef] [PubMed]

Stelzer, E. H. K.

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

Svoboda, K.

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef]

Tromberg, B. J.

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, Biophys. J. 68, 2137 (1995).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, D. W. Piston, and W. W. Webb, in Two-Photon Molecular Excitation in Laser Scanning Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), p. 445–458.

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef]

Biophys. J. (1)

Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, Biophys. J. 68, 2137 (1995).
[CrossRef] [PubMed]

J. Microsc. (2)

S. W. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

P. E. Hänninen, E. Soini, and S. W. Hell, J. Microsc. 176, 222 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Other (2)

W. Denk, D. W. Piston, and W. W. Webb, in Two-Photon Molecular Excitation in Laser Scanning Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), p. 445–458.

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996), p. 277.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Temperature increase of the focal point of a lens focusing light into a uniform medium, as predicted by the Gaussian beam approximation (dashed curve) and numerical calculation (solid curve). The curves can be applied to various media and wavelengths by use of appropriate scaling. The inserted time scale and temperature scale exemplify the case of a NA=1.2 water-immersion lens focusing 100  mW of 850-nm light into water.

Tables (2)

Tables Icon

Table 1 Temperature Increase T and Logarithmic Approximation T* for Different NA’s after Irradiation of Water with 100  mW at 850  nm for 1  s

Tables Icon

Table 2 Temperature Increase for Different Wavelengths at NA=1.2 after Irradiation of Water with 100  mW for Different Durations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

t-C2Tr, t=fr, t,
β-a2u2-1ννννϑ=h,
β+l2+a2s2ϑˆl, s=cl, s.
ϑˆl, s, β=cl, s0βdβ exp-l2-a2s2β-β, =cl, sl2+a2s2-1×1-exp-l2-a2s2β.

Metrics