Abstract

Tests of optical data storage in arrays of microfibers confirm its applicability and potential for higher storage densities than those achievable with conventional holographic data storage. Arrays of single-mode microfibers, spaced 0.78 µm apart and 60 µm long, were generated in a photopolymer film with four laser beams and simultaneously inscribed with Lippmann–Bragg fringes by use of a counterpropagating beam. Following the curing steps, spectra of white light retroreflected from a single fiber exhibit the reconstructed spectral lines of the multiwavelength laser used in the recording step; 1011 bits/cm2, or 1013 bits on a compact disk, appear to be recordable.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Labeyrie, Quinzièmes Journées Nationales d'Optique Guidée, Coll. Proc. Palaiseau (Ecole Polytechnique, Palaiseau, France, 1995).
  2. G. Lippmann, J. Phys. (France) III, 97 (1894).
  3. Y. N. Denysiuk, Opt. Spectrosc. (USSR) 15, 279 (1963).
  4. G. W. Stroke and A. Labeyrie, Phys. Lett. 20, 2 (1966).
  5. A. Pu and D. Psaltis, Appl. Opt. 35, 2389 (1996).
    [CrossRef] [PubMed]
  6. K. Nonaka, J. Appl. Phys. 78, 4345 (1995).
    [CrossRef]
  7. H. F. Eichler, S. Diez, R. Elschner, R. MacDonald, A. Schellinger, R. Schulz, and A. Wappelt, presented at the Fourth International Conference on Frontiers of Polymers and Advanced Materials, Cairo, January 4–9, 1997.
  8. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971).
  9. A. Labeyrie, Electro-Opt. Syst. Design (1971).
  10. A. M. Weber, W. K. Smothers, T. J. Trout, and D. J. Mickish, Proc. SPIE 1212, 30 (1990).
    [CrossRef]
  11. C. Joubert, B. Loiseaux, A. Delboulbé, and J. P. Huignard, Proc. SPIE 2650, 243 (1996).
    [CrossRef]
  12. A. S. Kewitsch and A. Yariv, Opt. Lett. 21, 1 (1996).
    [CrossRef]
  13. M. Verdaguer, Science 272, 698 (1996).
    [CrossRef]
  14. D. Tipton, M. Armstrong, and S. Stevenson, Proc. SPIE 2176, 172 (1994).
    [CrossRef]

1996 (4)

A. Pu and D. Psaltis, Appl. Opt. 35, 2389 (1996).
[CrossRef] [PubMed]

C. Joubert, B. Loiseaux, A. Delboulbé, and J. P. Huignard, Proc. SPIE 2650, 243 (1996).
[CrossRef]

A. S. Kewitsch and A. Yariv, Opt. Lett. 21, 1 (1996).
[CrossRef]

M. Verdaguer, Science 272, 698 (1996).
[CrossRef]

1995 (1)

K. Nonaka, J. Appl. Phys. 78, 4345 (1995).
[CrossRef]

1994 (1)

D. Tipton, M. Armstrong, and S. Stevenson, Proc. SPIE 2176, 172 (1994).
[CrossRef]

1990 (1)

A. M. Weber, W. K. Smothers, T. J. Trout, and D. J. Mickish, Proc. SPIE 1212, 30 (1990).
[CrossRef]

1971 (1)

A. Labeyrie, Electro-Opt. Syst. Design (1971).

1966 (1)

G. W. Stroke and A. Labeyrie, Phys. Lett. 20, 2 (1966).

1963 (1)

Y. N. Denysiuk, Opt. Spectrosc. (USSR) 15, 279 (1963).

1894 (1)

G. Lippmann, J. Phys. (France) III, 97 (1894).

Armstrong, M.

D. Tipton, M. Armstrong, and S. Stevenson, Proc. SPIE 2176, 172 (1994).
[CrossRef]

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971).

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971).

Delboulbé, A.

C. Joubert, B. Loiseaux, A. Delboulbé, and J. P. Huignard, Proc. SPIE 2650, 243 (1996).
[CrossRef]

Denysiuk, Y. N.

Y. N. Denysiuk, Opt. Spectrosc. (USSR) 15, 279 (1963).

Diez, S.

H. F. Eichler, S. Diez, R. Elschner, R. MacDonald, A. Schellinger, R. Schulz, and A. Wappelt, presented at the Fourth International Conference on Frontiers of Polymers and Advanced Materials, Cairo, January 4–9, 1997.

Eichler, H. F.

H. F. Eichler, S. Diez, R. Elschner, R. MacDonald, A. Schellinger, R. Schulz, and A. Wappelt, presented at the Fourth International Conference on Frontiers of Polymers and Advanced Materials, Cairo, January 4–9, 1997.

Elschner, R.

H. F. Eichler, S. Diez, R. Elschner, R. MacDonald, A. Schellinger, R. Schulz, and A. Wappelt, presented at the Fourth International Conference on Frontiers of Polymers and Advanced Materials, Cairo, January 4–9, 1997.

Huignard, J. P.

C. Joubert, B. Loiseaux, A. Delboulbé, and J. P. Huignard, Proc. SPIE 2650, 243 (1996).
[CrossRef]

Joubert, C.

C. Joubert, B. Loiseaux, A. Delboulbé, and J. P. Huignard, Proc. SPIE 2650, 243 (1996).
[CrossRef]

Kewitsch, A. S.

Labeyrie, A.

A. Labeyrie, Electro-Opt. Syst. Design (1971).

G. W. Stroke and A. Labeyrie, Phys. Lett. 20, 2 (1966).

A. Labeyrie, Quinzièmes Journées Nationales d'Optique Guidée, Coll. Proc. Palaiseau (Ecole Polytechnique, Palaiseau, France, 1995).

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971).

Lippmann, G.

G. Lippmann, J. Phys. (France) III, 97 (1894).

Loiseaux, B.

C. Joubert, B. Loiseaux, A. Delboulbé, and J. P. Huignard, Proc. SPIE 2650, 243 (1996).
[CrossRef]

MacDonald, R.

H. F. Eichler, S. Diez, R. Elschner, R. MacDonald, A. Schellinger, R. Schulz, and A. Wappelt, presented at the Fourth International Conference on Frontiers of Polymers and Advanced Materials, Cairo, January 4–9, 1997.

Mickish, D. J.

A. M. Weber, W. K. Smothers, T. J. Trout, and D. J. Mickish, Proc. SPIE 1212, 30 (1990).
[CrossRef]

Nonaka, K.

K. Nonaka, J. Appl. Phys. 78, 4345 (1995).
[CrossRef]

Psaltis, D.

Pu, A.

Schellinger, A.

H. F. Eichler, S. Diez, R. Elschner, R. MacDonald, A. Schellinger, R. Schulz, and A. Wappelt, presented at the Fourth International Conference on Frontiers of Polymers and Advanced Materials, Cairo, January 4–9, 1997.

Schulz, R.

H. F. Eichler, S. Diez, R. Elschner, R. MacDonald, A. Schellinger, R. Schulz, and A. Wappelt, presented at the Fourth International Conference on Frontiers of Polymers and Advanced Materials, Cairo, January 4–9, 1997.

Smothers, W. K.

A. M. Weber, W. K. Smothers, T. J. Trout, and D. J. Mickish, Proc. SPIE 1212, 30 (1990).
[CrossRef]

Stevenson, S.

D. Tipton, M. Armstrong, and S. Stevenson, Proc. SPIE 2176, 172 (1994).
[CrossRef]

Stroke, G. W.

G. W. Stroke and A. Labeyrie, Phys. Lett. 20, 2 (1966).

Tipton, D.

D. Tipton, M. Armstrong, and S. Stevenson, Proc. SPIE 2176, 172 (1994).
[CrossRef]

Trout, T. J.

A. M. Weber, W. K. Smothers, T. J. Trout, and D. J. Mickish, Proc. SPIE 1212, 30 (1990).
[CrossRef]

Verdaguer, M.

M. Verdaguer, Science 272, 698 (1996).
[CrossRef]

Wappelt, A.

H. F. Eichler, S. Diez, R. Elschner, R. MacDonald, A. Schellinger, R. Schulz, and A. Wappelt, presented at the Fourth International Conference on Frontiers of Polymers and Advanced Materials, Cairo, January 4–9, 1997.

Weber, A. M.

A. M. Weber, W. K. Smothers, T. J. Trout, and D. J. Mickish, Proc. SPIE 1212, 30 (1990).
[CrossRef]

Yariv, A.

Appl. Opt. (1)

Electro-Opt. Syst. Design (1)

A. Labeyrie, Electro-Opt. Syst. Design (1971).

J. Appl. Phys. (1)

K. Nonaka, J. Appl. Phys. 78, 4345 (1995).
[CrossRef]

J. Phys. (France) III (1)

G. Lippmann, J. Phys. (France) III, 97 (1894).

Opt. Lett. (1)

Opt. Spectrosc. (USSR) (1)

Y. N. Denysiuk, Opt. Spectrosc. (USSR) 15, 279 (1963).

Phys. Lett. (1)

G. W. Stroke and A. Labeyrie, Phys. Lett. 20, 2 (1966).

Proc. SPIE (3)

A. M. Weber, W. K. Smothers, T. J. Trout, and D. J. Mickish, Proc. SPIE 1212, 30 (1990).
[CrossRef]

C. Joubert, B. Loiseaux, A. Delboulbé, and J. P. Huignard, Proc. SPIE 2650, 243 (1996).
[CrossRef]

D. Tipton, M. Armstrong, and S. Stevenson, Proc. SPIE 2176, 172 (1994).
[CrossRef]

Science (1)

M. Verdaguer, Science 272, 698 (1996).
[CrossRef]

Other (3)

A. Labeyrie, Quinzièmes Journées Nationales d'Optique Guidée, Coll. Proc. Palaiseau (Ecole Polytechnique, Palaiseau, France, 1995).

H. F. Eichler, S. Diez, R. Elschner, R. MacDonald, A. Schellinger, R. Schulz, and A. Wappelt, presented at the Fourth International Conference on Frontiers of Polymers and Advanced Materials, Cairo, January 4–9, 1997.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical recording (left) and readout (right) of data in a fibered layer. A transparent substrate (bottom) carries the data layer (middle), 100300 µm thick with optical fibers spaced 0.71.0 µm apart (the vertical columnar structures). For recording, two counterpropagating beams of polychromatic light are focused at a fiber's ends and guided through the photorefractive core of the fiber. The interference fringes generate a superposition of phase gratings in the fiber, one for each wavelength used. The gratings, which are reflective for the corresponding wavelengths, are probed in reflection during readout with a single spot of tunable or broadband laser light.

Fig. 2
Fig. 2

Numerical simulation of recording and readout in a microfiber. Light with a random binary spectrum of 600  lines (A) interferes in a 0.3-mm-long fiber. Part of the interferogram, to which 1% noise is added, is shown in B where an arrow indicates the central fringe. The spectrum lines are spaced as the axial resonant modes of a cavity with the same optical length as the fibers; the interferogram has a 0.3-mm periodicity. In the reconstructed spectrum (C) the low level of noise permits error-free discrimination of 0 and 1 values.

Fig. 3
Fig. 3

Optical system used to test the recording and reading of data in a photopolymer film. A single exposure creates the microfibers and inscribes them with identical data. For generating the fibers, a columnar interference pattern is formed by four beams illuminating from the top (inset at left). For wavelength invariance these beams are diffracted from grid CB and imaged onto glass-laminated films S by M1, a 40× microscope lens, through spatial filter D located at the object focus of lens L. With the counterpropagating light received from beam splitter BS and 4× microscope lens M2, interference fringes are added to the column cores, typically 600 of them in the thickness of a 100µm film. Eyepiece E and spectroscopic analyzer Sp serve for readout; M2 is occulted, and D is replaced by a diaphragm.

Fig. 4
Fig. 4

(a) Array of microfibers spaced 0.78 µm apart, seen in transmitted white light under a microscope equipped with a 100× oil-immersion lens. A single fiber is also illuminated in reflection, with a spot of white light, to probe its Lippmann–Bragg stratification. It appears as a brighter dot, blue in color, the spectrum of which (b) matches the recorded argon-laser spectrum (vertical lines), thus establishing the occurrence of light confinement and Lippmann–Bragg reflection in a fiber.

Metrics