Abstract

The effect of intracavity electromagnetically induced transparency (EIT) on the properties of optical resonators and active laser devices is discussed theoretically. Pronounced frequency pulling and cavity-linewidth narrowing are predicted. The EIT effect can be used to reduce classical and quantum-phase noise of the beat note of an optical oscillator substantially. Fundamental limits of this stabilization mechanism as well as its potential application to high-resolution spectroscopy are discussed.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991); for a review of the subject see S. E. Harris, Phys. Today 50(7), 36 (1997).
    [CrossRef] [PubMed]
  2. E. Arimondo, in Progress in Optics XXXV, E. Wolf and L. Mandel, eds. (North-Holland, Amsterdam, 1996), pp. 259–354.
  3. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
    [CrossRef] [PubMed]
  4. M. O. Scully and M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992).
    [CrossRef] [PubMed]
  5. M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
    [CrossRef]
  6. Frequency pulling by dark resonances in an optically thin medium was discussed by A. M. Akulshin, A. A. Celkov, and V. L. Velichansky, Opt. Commun. 84, 139 (1991); A. M. Akulshin and M. Ohtsu, Quantum Electron. 24, 561 (1994).
    [CrossRef]
  7. Note that the present system is related to the correlated emission laser M. P. Winters, J. L. Hall, and P. Toschek, Phys. Rev. Lett. 65, 3116 (1990), in which a coherently prepared three-level gain medium leads to a strong correlation of the phase fluctuations of two laser modes. The correlated emission laser effect results in a vanishing diffusion coefficient for the relative phase angle. In contrast with the present case the vanishing coefficient is, however, accompanied by phase locking.
    [CrossRef] [PubMed]
  8. S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992); M. Xiao, Y. Li, S-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
    [CrossRef] [PubMed]
  9. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986); M. Sargent, M. O. Scully, and W. Lamb, Laser Theory (Addison-Wesley, Reading, Mass., 1974).
  10. For a c-number Langevin description of ?-type atoms interacting with two fields, see, for example, M. Fleischhauer and Th. Richter, Phys. Rev. A 51, 2430 (1995).
    [CrossRef] [PubMed]
  11. An example of the use of dispersive elements for quantum-noise reductions is described in Y. Shevy, J. Iannelli, J. Kitching, and A. Yariv, Opt. Lett. 17, 661 (1992).
    [CrossRef] [PubMed]
  12. H. Li and N. B. Abraham, Appl. Phys. Lett. 53, 2257 (1988).
    [CrossRef]
  13. O. Kocharovskaya and I. V. Koryukin, in Nonlinear Dynamics in Optical Systems, N. B. Abraham, E. Garmire, and P. Mandel, eds., Vol.??7 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 251.

1997

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
[CrossRef]

1996

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

1995

For a c-number Langevin description of ?-type atoms interacting with two fields, see, for example, M. Fleischhauer and Th. Richter, Phys. Rev. A 51, 2430 (1995).
[CrossRef] [PubMed]

1992

An example of the use of dispersive elements for quantum-noise reductions is described in Y. Shevy, J. Iannelli, J. Kitching, and A. Yariv, Opt. Lett. 17, 661 (1992).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992); M. Xiao, Y. Li, S-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

M. O. Scully and M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992).
[CrossRef] [PubMed]

1991

Frequency pulling by dark resonances in an optically thin medium was discussed by A. M. Akulshin, A. A. Celkov, and V. L. Velichansky, Opt. Commun. 84, 139 (1991); A. M. Akulshin and M. Ohtsu, Quantum Electron. 24, 561 (1994).
[CrossRef]

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991); for a review of the subject see S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef] [PubMed]

1990

Note that the present system is related to the correlated emission laser M. P. Winters, J. L. Hall, and P. Toschek, Phys. Rev. Lett. 65, 3116 (1990), in which a coherently prepared three-level gain medium leads to a strong correlation of the phase fluctuations of two laser modes. The correlated emission laser effect results in a vanishing diffusion coefficient for the relative phase angle. In contrast with the present case the vanishing coefficient is, however, accompanied by phase locking.
[CrossRef] [PubMed]

1988

H. Li and N. B. Abraham, Appl. Phys. Lett. 53, 2257 (1988).
[CrossRef]

Abraham, N. B.

H. Li and N. B. Abraham, Appl. Phys. Lett. 53, 2257 (1988).
[CrossRef]

Akulshin, A. M.

Frequency pulling by dark resonances in an optically thin medium was discussed by A. M. Akulshin, A. A. Celkov, and V. L. Velichansky, Opt. Commun. 84, 139 (1991); A. M. Akulshin and M. Ohtsu, Quantum Electron. 24, 561 (1994).
[CrossRef]

Arimondo, E.

E. Arimondo, in Progress in Optics XXXV, E. Wolf and L. Mandel, eds. (North-Holland, Amsterdam, 1996), pp. 259–354.

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991); for a review of the subject see S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef] [PubMed]

Celkov, A. A.

Frequency pulling by dark resonances in an optically thin medium was discussed by A. M. Akulshin, A. A. Celkov, and V. L. Velichansky, Opt. Commun. 84, 139 (1991); A. M. Akulshin and M. Ohtsu, Quantum Electron. 24, 561 (1994).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992); M. Xiao, Y. Li, S-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

Fleischhauer, M.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
[CrossRef]

For a c-number Langevin description of ?-type atoms interacting with two fields, see, for example, M. Fleischhauer and Th. Richter, Phys. Rev. A 51, 2430 (1995).
[CrossRef] [PubMed]

M. O. Scully and M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992).
[CrossRef] [PubMed]

Hall, J. L.

Note that the present system is related to the correlated emission laser M. P. Winters, J. L. Hall, and P. Toschek, Phys. Rev. Lett. 65, 3116 (1990), in which a coherently prepared three-level gain medium leads to a strong correlation of the phase fluctuations of two laser modes. The correlated emission laser effect results in a vanishing diffusion coefficient for the relative phase angle. In contrast with the present case the vanishing coefficient is, however, accompanied by phase locking.
[CrossRef] [PubMed]

Harris, S. E.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992); M. Xiao, Y. Li, S-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991); for a review of the subject see S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef] [PubMed]

Hollberg, L.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
[CrossRef]

Iannelli, J.

Imamoglu, A.

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991); for a review of the subject see S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef] [PubMed]

Jain, M.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

Kasapi, A.

S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992); M. Xiao, Y. Li, S-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

Kitching, J.

Kocharovskaya, O.

O. Kocharovskaya and I. V. Koryukin, in Nonlinear Dynamics in Optical Systems, N. B. Abraham, E. Garmire, and P. Mandel, eds., Vol.??7 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 251.

Koryukin, I. V.

O. Kocharovskaya and I. V. Koryukin, in Nonlinear Dynamics in Optical Systems, N. B. Abraham, E. Garmire, and P. Mandel, eds., Vol.??7 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 251.

Li, H.

H. Li and N. B. Abraham, Appl. Phys. Lett. 53, 2257 (1988).
[CrossRef]

Lukin, M. D.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
[CrossRef]

Merriam, A. J.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

Richter, Th.

For a c-number Langevin description of ?-type atoms interacting with two fields, see, for example, M. Fleischhauer and Th. Richter, Phys. Rev. A 51, 2430 (1995).
[CrossRef] [PubMed]

Robinson, H. G.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
[CrossRef]

Scully, M. O.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
[CrossRef]

M. O. Scully and M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992).
[CrossRef] [PubMed]

Shevy, Y.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986); M. Sargent, M. O. Scully, and W. Lamb, Laser Theory (Addison-Wesley, Reading, Mass., 1974).

Toschek, P.

Note that the present system is related to the correlated emission laser M. P. Winters, J. L. Hall, and P. Toschek, Phys. Rev. Lett. 65, 3116 (1990), in which a coherently prepared three-level gain medium leads to a strong correlation of the phase fluctuations of two laser modes. The correlated emission laser effect results in a vanishing diffusion coefficient for the relative phase angle. In contrast with the present case the vanishing coefficient is, however, accompanied by phase locking.
[CrossRef] [PubMed]

Velichansky, V. L.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
[CrossRef]

Frequency pulling by dark resonances in an optically thin medium was discussed by A. M. Akulshin, A. A. Celkov, and V. L. Velichansky, Opt. Commun. 84, 139 (1991); A. M. Akulshin and M. Ohtsu, Quantum Electron. 24, 561 (1994).
[CrossRef]

Winters, M. P.

Note that the present system is related to the correlated emission laser M. P. Winters, J. L. Hall, and P. Toschek, Phys. Rev. Lett. 65, 3116 (1990), in which a coherently prepared three-level gain medium leads to a strong correlation of the phase fluctuations of two laser modes. The correlated emission laser effect results in a vanishing diffusion coefficient for the relative phase angle. In contrast with the present case the vanishing coefficient is, however, accompanied by phase locking.
[CrossRef] [PubMed]

Xia, H.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

Yariv, A.

Yin, G. Y.

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

Zibrov, A. S.

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
[CrossRef]

Appl. Phys. Lett.

H. Li and N. B. Abraham, Appl. Phys. Lett. 53, 2257 (1988).
[CrossRef]

Opt. Commun.

Frequency pulling by dark resonances in an optically thin medium was discussed by A. M. Akulshin, A. A. Celkov, and V. L. Velichansky, Opt. Commun. 84, 139 (1991); A. M. Akulshin and M. Ohtsu, Quantum Electron. 24, 561 (1994).
[CrossRef]

Opt. Lett.

Phys. Rev. A

For a c-number Langevin description of ?-type atoms interacting with two fields, see, for example, M. Fleischhauer and Th. Richter, Phys. Rev. A 51, 2430 (1995).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992); M. Xiao, Y. Li, S-Z. Jin, and J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Note that the present system is related to the correlated emission laser M. P. Winters, J. L. Hall, and P. Toschek, Phys. Rev. Lett. 65, 3116 (1990), in which a coherently prepared three-level gain medium leads to a strong correlation of the phase fluctuations of two laser modes. The correlated emission laser effect results in a vanishing diffusion coefficient for the relative phase angle. In contrast with the present case the vanishing coefficient is, however, accompanied by phase locking.
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991); for a review of the subject see S. E. Harris, Phys. Today 50(7), 36 (1997).
[CrossRef] [PubMed]

M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys. Rev. Lett. 77, 4326 (1996).
[CrossRef] [PubMed]

M. O. Scully and M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992).
[CrossRef] [PubMed]

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
[CrossRef]

Other

E. Arimondo, in Progress in Optics XXXV, E. Wolf and L. Mandel, eds. (North-Holland, Amsterdam, 1996), pp. 259–354.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986); M. Sargent, M. O. Scully, and W. Lamb, Laser Theory (Addison-Wesley, Reading, Mass., 1974).

O. Kocharovskaya and I. V. Koryukin, in Nonlinear Dynamics in Optical Systems, N. B. Abraham, E. Garmire, and P. Mandel, eds., Vol.??7 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), p. 251.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Generic Λ system for EIT. The frequencies of two fields are close to the resonant frequencies of transitions ab1 and ab2. b1,2 are metastable states. (b) Cavity response as a function of test-field frequency for different values of atomic density. The dotted, dashed, and solid curves correspond to η=0, η=10, and η=100, respectively. The parameters are Ω2=10γ, r=0.98, and νc-ν0=5γ.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Sν=IcircIin=t21+r2κ2-2rκcosΦν,
νr=11+ηνc+η1+ην0.
ΔνC=1-rκκ1-r11+η,
χ=ξγ1ν-ν0Ω22, χ=ξγ1γ0Ω22.
ηC/2γ0.
a·n=-C2+iΔncan+An2an+ignNσn+Fnt.
ν1-ν2=11+ην1c-ν2c+η¯1+ηωb2b1,
Sω=11+η¯22γcω2+γc2δωc2+2C21+η¯2νPout.

Metrics