Abstract

Two novel techniques for eliminating deterministic noise from a page-oriented memory are presented. The first technique equalizes the output response of ON pixels by adjustment of the exposure of each pixel during the recording of each data page. A test image transmitted through the system measures the spatial nonuniformities, and the appropriate inverse filter is imposed upon the data page and recorded in the storage material. On readout, the output signal values are then spatially uniform, perturbed only by random noise sources. Experimental results of using this predistortion technique in a pixel-matched holographic storage system are shown. Under conditions of high volumetric density, raw bit-error-rate (BER) improvements of 6–8  orders of magnitude are obtained (from 10-4 to <10-10). The second technique uses a phase shift during holographic storage to subtract from bright OFF pixels. Under conditions of low spatial light modulator contrast, BER improvements of 6  orders of magnitude (from 10-2 to 10-8) are demonstrated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription