Abstract

Light propagating within the cladding of a straight optical fiber exhibits wavelength-dependent oscillatory loss that resembles the whispering-gallery modes of a bent fiber. This novel observation can be explained by interference of light only within the cladding and the buffer without any influence of the fiber core. The technique promises applications similar to those that are due to whispering-gallery modes but without the additional requirement of having a bent fiber.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Tech. MTT-23, 134 (1975).
    [CrossRef]
  2. D. Marcuse, J. Opt. Soc. Am. 66, 311 (1976).
    [CrossRef]
  3. W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
    [CrossRef]
  4. F. M. Haran, J. S. Barton, and J. D. C. Jones, Opt. Lett. 18, 1618 (1993).
    [CrossRef] [PubMed]
  5. R. Morgan, J. S. Barton, P. G. Harper, and J. D. C. Jones, Opt. Lett. 15, 947 (1990).
    [CrossRef] [PubMed]
  6. R. Morgan, J. D. C. Jones, J. S. Barton, and P. G. Harper, IEEE J. Lightwave Technol. 12, 1355 (1994).
    [CrossRef]
  7. H. Mahlein, Fiber Integr. Opt. 4, 4 (1983).
    [CrossRef]
  8. C. M. deBolk and P. Mathiesse, Electron. Lett. 20, 109 (1984).
    [CrossRef]
  9. F. M. Haran, J. S. Barton, S. R. Kidd, and J. D. C. Jones, Meas. Sci. Technol. 5, 526 (1994).
    [CrossRef]
  10. F. M. Haran, J. S. Barton, and J. D. C. Jones, Electron. Lett. 30, 1433 (1994).
    [CrossRef]
  11. W. L. Truett, The Photonics Design and Application Handbook, 39th ed. (Laurin, Pittsfield, Mass., 1993), Vol. 3, p. H-335.

1994

R. Morgan, J. D. C. Jones, J. S. Barton, and P. G. Harper, IEEE J. Lightwave Technol. 12, 1355 (1994).
[CrossRef]

F. M. Haran, J. S. Barton, S. R. Kidd, and J. D. C. Jones, Meas. Sci. Technol. 5, 526 (1994).
[CrossRef]

F. M. Haran, J. S. Barton, and J. D. C. Jones, Electron. Lett. 30, 1433 (1994).
[CrossRef]

1993

1990

1984

C. M. deBolk and P. Mathiesse, Electron. Lett. 20, 109 (1984).
[CrossRef]

1983

H. Mahlein, Fiber Integr. Opt. 4, 4 (1983).
[CrossRef]

1979

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

1976

1975

A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Tech. MTT-23, 134 (1975).
[CrossRef]

Barton, J. S.

R. Morgan, J. D. C. Jones, J. S. Barton, and P. G. Harper, IEEE J. Lightwave Technol. 12, 1355 (1994).
[CrossRef]

F. M. Haran, J. S. Barton, S. R. Kidd, and J. D. C. Jones, Meas. Sci. Technol. 5, 526 (1994).
[CrossRef]

F. M. Haran, J. S. Barton, and J. D. C. Jones, Electron. Lett. 30, 1433 (1994).
[CrossRef]

F. M. Haran, J. S. Barton, and J. D. C. Jones, Opt. Lett. 18, 1618 (1993).
[CrossRef] [PubMed]

R. Morgan, J. S. Barton, P. G. Harper, and J. D. C. Jones, Opt. Lett. 15, 947 (1990).
[CrossRef] [PubMed]

deBolk, C. M.

C. M. deBolk and P. Mathiesse, Electron. Lett. 20, 109 (1984).
[CrossRef]

Gambling, W. A.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

Haran, F. M.

F. M. Haran, J. S. Barton, and J. D. C. Jones, Electron. Lett. 30, 1433 (1994).
[CrossRef]

F. M. Haran, J. S. Barton, S. R. Kidd, and J. D. C. Jones, Meas. Sci. Technol. 5, 526 (1994).
[CrossRef]

F. M. Haran, J. S. Barton, and J. D. C. Jones, Opt. Lett. 18, 1618 (1993).
[CrossRef] [PubMed]

Harper, P. G.

R. Morgan, J. D. C. Jones, J. S. Barton, and P. G. Harper, IEEE J. Lightwave Technol. 12, 1355 (1994).
[CrossRef]

R. Morgan, J. S. Barton, P. G. Harper, and J. D. C. Jones, Opt. Lett. 15, 947 (1990).
[CrossRef] [PubMed]

Jones, J. D. C.

R. Morgan, J. D. C. Jones, J. S. Barton, and P. G. Harper, IEEE J. Lightwave Technol. 12, 1355 (1994).
[CrossRef]

F. M. Haran, J. S. Barton, S. R. Kidd, and J. D. C. Jones, Meas. Sci. Technol. 5, 526 (1994).
[CrossRef]

F. M. Haran, J. S. Barton, and J. D. C. Jones, Electron. Lett. 30, 1433 (1994).
[CrossRef]

F. M. Haran, J. S. Barton, and J. D. C. Jones, Opt. Lett. 18, 1618 (1993).
[CrossRef] [PubMed]

R. Morgan, J. S. Barton, P. G. Harper, and J. D. C. Jones, Opt. Lett. 15, 947 (1990).
[CrossRef] [PubMed]

Kidd, S. R.

F. M. Haran, J. S. Barton, S. R. Kidd, and J. D. C. Jones, Meas. Sci. Technol. 5, 526 (1994).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Tech. MTT-23, 134 (1975).
[CrossRef]

Mahlein, H.

H. Mahlein, Fiber Integr. Opt. 4, 4 (1983).
[CrossRef]

Marcuse, D.

Mathiesse, P.

C. M. deBolk and P. Mathiesse, Electron. Lett. 20, 109 (1984).
[CrossRef]

Matsumura, H.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

Morgan, R.

R. Morgan, J. D. C. Jones, J. S. Barton, and P. G. Harper, IEEE J. Lightwave Technol. 12, 1355 (1994).
[CrossRef]

R. Morgan, J. S. Barton, P. G. Harper, and J. D. C. Jones, Opt. Lett. 15, 947 (1990).
[CrossRef] [PubMed]

Ragdale, C. M.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Tech. MTT-23, 134 (1975).
[CrossRef]

Truett, W. L.

W. L. Truett, The Photonics Design and Application Handbook, 39th ed. (Laurin, Pittsfield, Mass., 1993), Vol. 3, p. H-335.

Electron. Lett.

C. M. deBolk and P. Mathiesse, Electron. Lett. 20, 109 (1984).
[CrossRef]

F. M. Haran, J. S. Barton, and J. D. C. Jones, Electron. Lett. 30, 1433 (1994).
[CrossRef]

Fiber Integr. Opt.

H. Mahlein, Fiber Integr. Opt. 4, 4 (1983).
[CrossRef]

IEEE J. Lightwave Technol.

R. Morgan, J. D. C. Jones, J. S. Barton, and P. G. Harper, IEEE J. Lightwave Technol. 12, 1355 (1994).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Tech. MTT-23, 134 (1975).
[CrossRef]

J. Opt. Soc. Am.

Meas. Sci. Technol.

F. M. Haran, J. S. Barton, S. R. Kidd, and J. D. C. Jones, Meas. Sci. Technol. 5, 526 (1994).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

Other

W. L. Truett, The Photonics Design and Application Handbook, 39th ed. (Laurin, Pittsfield, Mass., 1993), Vol. 3, p. H-335.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup. Light from a white-light source (S) enters a 5–50-cm-long fiber (F). Image  I of the exiting light shows a central bright spot that is due to light from the core and a diffuse halo around it that is due to light from the cladding. Light from the cladding is analyzed with monochromator M. L is a lens.

Fig. 2
Fig. 2

Spectra of light exiting fiber (a) with the fiber buffer intact and (b) with the buffer removed. Notice the absence of oscillations in the fiber with the buffer removed.

Fig. 3
Fig. 3

Ray diagram to explain the oscillatory spectra of light from the fiber cladding. Incident light from source S is partly reflected and refracted at the cladding–buffer interface of a straight fiber. These rays interfere in the cladding.

Fig. 4
Fig. 4

Calculated variation of spacing δν between successive maxima in the oscillatory spectrum of curve (a) of Fig.  2 with angle ϵ of incident ray SA in Fig.  3. This calculation is made with Eq.  (1) for a wavelength of 600  nm and associated refractive indices of 1.5155 and 1.4580 for buffer and cladding, respectively. Notice that, for a range of small angles near ϵ=0, δν changes little from the measured value of 193 cm-1.

Fig. 5
Fig. 5

Experimentally observed variation × of spacing δν between successive maxima of curve (a) of Fig.  2 with wavelength of light exiting the fiber cladding. The solid curve represents the result of calculations based on Eq.  (1). For a good match between the experimental data and calculations it is necessary to assume a wavelength dependence of cladding and buffer refractive indices as shown in Fig.  6.

Fig. 6
Fig. 6

Dashed curve, known wavelength dependence of the refractive index of silica cladding. Solid curve, refractive index of the fiber buffer. We deduce these indices by fitting the experimentally observed variation of spacing δν between successive maxima of curve (a) of Fig.  2 with calculations based on Eq.  (1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ=2n2λt/cosΘ2-2n1λtsinΘ1/cotΘ2,

Metrics