Abstract

We report high-power vacuum-ultraviolet (vuv) generation at the Lyman-α wavelength of 121.6 nm, using a simple experimental system. vuv radiation is produced through two-photon-resonant difference-frequency mixing with a tunable ArF excimer laser and a Nd:YAG-pumped dye laser. Using phase-matched mixtures of Kr and Ar at a total pressure of 650  mbar, we produced 7-µJ energies at Lyman-α in approximately 5 ns 1.3 kW, as measured directly with a pyroelectric energy probe. Measurements indicate that higher powers are possible with system optimization. A tuning range of 0.1 nm was achieved for a fixed gas mole fraction at a total pressure of 650  mbar. Qualitative agreement is found between measured tuning profiles and theoretical predictions.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Langer, H. Puell, and H. Röhr, Opt. Commun. 34, 137 (1980).
    [CrossRef]
  2. R. Mahon and Y. M. Yiu, Opt. Lett. 5, 279 (1980).
    [CrossRef] [PubMed]
  3. R. Hilbig and R. Wallenstein, IEEE J. Quantum Electron. 17, 1566 (1981).
    [CrossRef]
  4. J. P. Marangos, N. Shen, H. Ma, M. H. R. Hutchinson, and J. P. Connerade, J. Opt. Soc. Am. B 7, 1254 (1990).
    [CrossRef]
  5. G. W. Faris and M. J. Dyer, in Short-Wavelength Coherent Radiation:?Generation and Applications, P. H. Bucksbaum and N. M. Ceglio, eds. (Optical Society of America, Washington, D.C., 1991), pp. 56–61.
  6. C. E. M. Strauss and D. J. Funk, Opt. Lett. 16, 1192 (1991).
    [CrossRef] [PubMed]
  7. O. Kittelmann, J. Ringling, G. Korn, A. Nazarkin, and I. V. Hertel, Opt. Lett. 21, 1159 (1996).
    [CrossRef] [PubMed]
  8. G. W. Faris and M. J. Dyer, J. Opt. Soc. Am. B 10, 2273 (1993).
    [CrossRef]
  9. G. W. Faris and M. J. Dyer, Opt. Lett. 18, 382 (1993).
    [CrossRef] [PubMed]
  10. G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
    [CrossRef]
  11. G. Hilber, D. J. Brink, and R. Wallenstein, Phys. Rev. A 38, 6231 (1988).
    [CrossRef] [PubMed]
  12. M. C. Gower, Opt. Lett. 8, 70 (1983).
    [CrossRef] [PubMed]
  13. To achieve agreement with Ref.??13 and the figures of Ref.??11, we use only positive k values in Eq.??(3) of Ref.??11. We do use a negative sign for the parameterized distance ? for the difference (dye) wavelength.

1996

1993

1991

1990

1988

G. Hilber, D. J. Brink, and R. Wallenstein, Phys. Rev. A 38, 6231 (1988).
[CrossRef] [PubMed]

1983

1981

R. Hilbig and R. Wallenstein, IEEE J. Quantum Electron. 17, 1566 (1981).
[CrossRef]

1980

H. Langer, H. Puell, and H. Röhr, Opt. Commun. 34, 137 (1980).
[CrossRef]

R. Mahon and Y. M. Yiu, Opt. Lett. 5, 279 (1980).
[CrossRef] [PubMed]

1975

G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

Brink, D. J.

G. Hilber, D. J. Brink, and R. Wallenstein, Phys. Rev. A 38, 6231 (1988).
[CrossRef] [PubMed]

Connerade, J. P.

Dyer, M. J.

G. W. Faris and M. J. Dyer, Opt. Lett. 18, 382 (1993).
[CrossRef] [PubMed]

G. W. Faris and M. J. Dyer, J. Opt. Soc. Am. B 10, 2273 (1993).
[CrossRef]

G. W. Faris and M. J. Dyer, in Short-Wavelength Coherent Radiation:?Generation and Applications, P. H. Bucksbaum and N. M. Ceglio, eds. (Optical Society of America, Washington, D.C., 1991), pp. 56–61.

Faris, G. W.

G. W. Faris and M. J. Dyer, Opt. Lett. 18, 382 (1993).
[CrossRef] [PubMed]

G. W. Faris and M. J. Dyer, J. Opt. Soc. Am. B 10, 2273 (1993).
[CrossRef]

G. W. Faris and M. J. Dyer, in Short-Wavelength Coherent Radiation:?Generation and Applications, P. H. Bucksbaum and N. M. Ceglio, eds. (Optical Society of America, Washington, D.C., 1991), pp. 56–61.

Funk, D. J.

Gower, M. C.

Hertel, I. V.

Hilber, G.

G. Hilber, D. J. Brink, and R. Wallenstein, Phys. Rev. A 38, 6231 (1988).
[CrossRef] [PubMed]

Hilbig, R.

R. Hilbig and R. Wallenstein, IEEE J. Quantum Electron. 17, 1566 (1981).
[CrossRef]

Hutchinson, M. H. R.

Kittelmann, O.

Korn, G.

Langer, H.

H. Langer, H. Puell, and H. Röhr, Opt. Commun. 34, 137 (1980).
[CrossRef]

Ma, H.

Mahon, R.

Marangos, J. P.

Nazarkin, A.

Puell, H.

H. Langer, H. Puell, and H. Röhr, Opt. Commun. 34, 137 (1980).
[CrossRef]

Ringling, J.

Röhr, H.

H. Langer, H. Puell, and H. Röhr, Opt. Commun. 34, 137 (1980).
[CrossRef]

Shen, N.

Strauss, C. E. M.

Wallenstein, R.

G. Hilber, D. J. Brink, and R. Wallenstein, Phys. Rev. A 38, 6231 (1988).
[CrossRef] [PubMed]

R. Hilbig and R. Wallenstein, IEEE J. Quantum Electron. 17, 1566 (1981).
[CrossRef]

Yiu, Y. M.

IEEE J. Quantum Electron.

R. Hilbig and R. Wallenstein, IEEE J. Quantum Electron. 17, 1566 (1981).
[CrossRef]

G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

H. Langer, H. Puell, and H. Röhr, Opt. Commun. 34, 137 (1980).
[CrossRef]

Opt. Lett.

Phys. Rev. A

G. Hilber, D. J. Brink, and R. Wallenstein, Phys. Rev. A 38, 6231 (1988).
[CrossRef] [PubMed]

Other

To achieve agreement with Ref.??13 and the figures of Ref.??11, we use only positive k values in Eq.??(3) of Ref.??11. We do use a negative sign for the parameterized distance ? for the difference (dye) wavelength.

G. W. Faris and M. J. Dyer, in Short-Wavelength Coherent Radiation:?Generation and Applications, P. H. Bucksbaum and N. M. Ceglio, eds. (Optical Society of America, Washington, D.C., 1991), pp. 56–61.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental apparatus for vuv generation. PMT, photomultiplier tube.

Fig. 2
Fig. 2

Generated vuv as a function of Kr partial pressure. All measurements were performed at Lyman-α.

Fig. 3
Fig. 3

Absolute vuv energy for a Kr partial pressure of 130 mbar. 7 µJ is generated at Lyman-α.

Fig. 4
Fig. 4

Tuning range of vuv at different partial pressures of Kr. Solid curves, experimentally measured tuning profiles; dashed curves, fits using theoretical profiles.

Metrics